Loading…
Floriculture clear filter
arrow_back View All Dates
Wednesday, September 25
 

7:59am HST

Floriculture 1 (FLOR 1)
Wednesday September 25, 2024 7:59am - 9:45am HST
Phosphate Solubilizing Bacteria: Leveraging The Soilless Substrate For Improved Phosphorus Nutrition In Controlled Environment Agriculture. - Michelle Jones
Phosphate Solubilizing Bacteria Isolated From Greenhouse Ornamentals Solubilize Phosphate In Vitro And Ameliorate P Deficiency Symptoms In Marigold ‘Durango Yellow’ Fertilized With Calcium Phosphate. - Juan Quijia Pillajo
Activated Aluminum Amended Substrates Reduce Phosphorus Leaching in Floriculture Production - Damon Abdi
Iron-coated Sand as a Sustainable Substrate Amendment for Nutrient Management of Containerized Floriculture Crops - Savannah Mead
Phosphorous Restriction Suppresses Growth of Containerized Coneflower - Garrett Owen
Investigating Synergistic Effects of Biostimulants and Biochar on Water Use Efficiency for Containerized Celosia (Argentea cristata) and Gomphrena (Gomphrena globose) Production - Lilin Chen
Effects of Reduced Water Usage During Production on Economic Value, Growth, And Quality of Flowering Indoor Plants - Kaitlin Hopkins
Moderator
DA

Damon Abdi

Louisiana State University Agricultural Center
Wednesday September 25, 2024 7:59am - 9:45am HST
Nautilus

8:00am HST

FLOR 1 - Phosphate Solubilizing Bacteria: Leveraging The Soilless Substrate For Improved Phosphorus Nutrition In Controlled Environment Agriculture.
Wednesday September 25, 2024 8:00am - 8:15am HST
Phosphorus (P) is an essential macronutrient with low availability for plant uptake. The availability of P is reduced by the formation of insoluble complexes with calcium (Ca) and iron (Fe). Phosphorus solubilizing bacteria (PSB) can enhance P uptake by producing organic acids that acidify the rhizosphere and breakdown the insoluble P compounds. The goal of this research is to identify PSB that can increase P uptake efficiency in soilless production systems. A collection of bacteria isolated from the rhizosphere of greenhouse grown ornamentals was used to identify PSB using both in vitro and in planta evaluations. A malachite green assay optimized for 96-well plates was used to screen 1,056 bacterial isolates for the ability to solubilize phosphorus from both calcium phosphate and iron phosphate. This in vitro assay identified 14 and 24 PSB that solubilized 25% or more of the P from Ca2(PO4)3 and FePO4·2H20, respectively. There was no overlap between the PSB that solubilized Ca2(PO4)3 and those that solubilized FePO4. In planta evaluations were conducted in Marigold ‘Durango Yellow’ (Tagetes patula) and Tomato ‘Bush Beefsteak’ (Solanum lycopersicum) grown in a peat-based substrate (pH=7) and inoculated with individual PSB as a media drench (20 mL; OD595=0.1). Digital phenotyping with the TraitFinder (Phenospex) was used to quantify growth promotion (digital biomass and bloom area), and the severity of P deficiency symptoms [Green Leaf Index (GLI), normalized difference vegetation index (NDVI), Normalized Pigment Chlorophyll Ratio Index (NPCI), and Plant Senescence Reflectance Index (PSRI)]. Only seven FePO4·2H20 solubilizers (Fe-PSB) and six Ca2(PO4)3 solubilizers (Ca-PSB) performed better than the control in at least one of the evaluated parameters. A validation experiment was conducted to confirm the beneficial activity of the seven Fe-PSB (C2F9, C3A8, C11G1, C8D10, C6E7, C3G9, and C3F10) and the six Ca-PSB (C4A1, C2G6, B3A7, C11A5, C4B6, C12F4, and C6H6). The validation experiments were conducted with Marigold ‘Durango Yellow’ and Tomato ‘Early girl’ grown in a peat-based substrate (pH=7) and inoculated with individual PSB as a media drench (20 mL; OD595=0.1). Bacillus megaterium (C3F10), Pseudomonas sp. (C6E7), and two strains of Pantoea rwandensis (C3A8 and C8D10) showed a beneficial response when applied to plants fertilized with FePO4·2H20. Only, Enterobacter soli C4A1 showed a beneficial response when applied to plants fertilized with Ca2(PO4)3. The malachite-green assay and digital phenotyping are suitable tools for high-throughput identification of PSB that can be used to improve phosphorus nutrition in soilless culture systems.
Speakers
MJ

Michelle Jones

Professor, The Ohio State University
Co-authors
JQ

Juan Quijia Pillajo

The Ohio State University
LC

Laura Chapin

The Ohio State University
NA
SN

Sachin Naik

The Ohio State University
NA
Wednesday September 25, 2024 8:00am - 8:15am HST
Nautilus

8:15am HST

FLOR 1 - Phosphate Solubilizing Bacteria Isolated From Greenhouse Ornamentals Solubilize Phosphate In Vitro And Ameliorate P Deficiency Symptoms In Marigold ‘Durango Yellow’ Fertilized With Calcium Phosphate.
Wednesday September 25, 2024 8:15am - 8:30am HST
Phosphorus (P) is an essential macronutrient absorbed by plants as orthophosphate (PO4). P availability depends on the pH of the substrate. At high pH, P forms insoluble compounds like Ca3(PO4)2 which is unavailable for plant uptake. Phosphate solubilizing bacteria (PSB) are plant-associated microorganisms that can break down Ca3(PO4)2 by secreting organic acids. PSB have been primarily evaluated as inoculum for crops grown in soil to improve P availability. However, less is known about the application of PSB in ornamentals grown in soilless substrates. Our goal was to identify PSB from a collection of bacteria isolated from the rhizosphere of greenhouse ornamentals. First, the collection was screened in vitro for the bacterial capacity to reduce pH of the media using the bromophenol-blue color assay. Thirty-five isolates were identified to reduce media pH, and their P solubilization capacity was quantified using ion chromatography. Fourteen isolates with the highest P solubilization were selected for whole-genome sequencing, but only two bacterial isolates (C2B11 and C8D10) were advanced to the in-planta evaluation using Marigold (Tagetes patula) 'Durango Yellow' grown in a peat-based substrate (pH = 7). Plants were irrigated with 100 mg·L-1 N from a 15N-0P-15K fertilizer, and P was supplemented weekly as Ca3(PO4)2 via substrate drench applications. Lalrise Vita (Lallemand Plant Care) and Bacillus velezensis (the active ingredient in Lalrise Vita) were included as positive controls. Plant phenotyping was conducted using the TraitFinder automatic system (Phenospex). TraitFinder assessment parameters included digital biomass, bloom area, Green Leaf Index (GLI), Normalized Pigment Chlorophyll Ratio Index (NPCI), and Plant Senescence Reflectance Index (PSRI). Lalrise Vita performed better than the control in all the parameters evaluated. B. velezensis increased bloom area and showed higher GLI and lower NPCI than the control. Pantoea sp. C2B11 significantly increased digital biomass, bloom area, and GLI. Pantoea sp. C8D10 only showed an increase in GLI values. Both C2B11 and C8D10 possess various genes involved in gluconic acid production. We identified two PSB that solubilize P in vitro, promote growth and bloom area, and improve canopy health (high GLI or low NPCI) in marigold plants fertilized with Ca3(PO4)2. Our next step is to validate the growth-promoting capacity of the identified PSB in other ornamentals. PSB can contribute to improving phosphorus nutrition and fertilizer use efficiency in greenhouse ornamental production.
Speakers
JQ

Juan Quijia Pillajo

The Ohio State University
Co-authors
MJ

Michelle Jones

The Ohio State University
NN

Nathan Nordstedt

FMC Corporation
NA
Wednesday September 25, 2024 8:15am - 8:30am HST
Nautilus

8:30am HST

FLOR 1 - Activated Aluminum Amended Substrates Reduce Phosphorus Leaching in Floriculture Production
Wednesday September 25, 2024 8:30am - 8:45am HST
The use of water-soluble fertilizers in floricultural production provides readily available nutrients to sustain short-term crop production; however, nutrients such as phosphorus are poorly retained in typical peat substrates. Activated aluminum is an amendment that has demonstrated success in binding phosphorus within substrates, reducing the amount of phosphorus that is leached from the container. This research investigated the production of Tagetes in peat-based substrates amended with or without activated aluminum and provided four different phosphorus fertilizer regimens. The fertilizer regimens encompassed a nitrogen, phosphorus, and potassium liquid blend applied weekly; however, phosphorus was only included for 0, 2, 4, or 6 weeks in total over the duration of the study. Growth of Tagetes was effectively similar, and leachate analysis provided insights that can be applied towards more efficient production methods. In this research, utilizing activated aluminum resulted in less phosphorus loss in container leachate than unamended substrates. The potential to decrease applied phosphorus during floricultural production can similarly be achieved when using substrates amended with activated aluminum. This presentation will decipher the dynamics of the movement of phosphorus and other anions of interest that may be relevant to sustainable floriculture production.
Speakers
DA

Damon Abdi

Louisiana State University Agricultural Center
Co-authors
JF

Jeb Fields

LSU AgCenter Hammond Research Station
JB

Jeffrey Beasley

University of North Carolina - Pembroke
NA
Wednesday September 25, 2024 8:30am - 8:45am HST
Nautilus

8:45am HST

FLOR 1 - Iron-coated Sand as a Sustainable Substrate Amendment for Nutrient Management of Containerized Floriculture Crops
Wednesday September 25, 2024 8:45am - 9:00am HST
As natural resources dwindle, sustainable alternatives to current fertilization methods are essential for environmental and economic progress. Acid mine drainage (AMD) and phosphorus from fertilizer runoff are significant sources of water pollution in the Appalachian region of the United States. Horticultural producers are faced with rising prices of phosphate fertilizers, putting the industry in a tenuous position: reducing these costly inputs to minimize water pollution but, in turn, diminishing product quality. AMD-based iron-coated sand is a novel phosphate sorbent that can potentially ameliorate AMD and prevent further phosphate pollution. This technology can cut growers’ input costs and slow the consumption of finite phosphate resources. This study aimed to determine the viability of iron-coated sand as a substrate amendment for reducing phosphate leaching and enhancing growth, flowering, and phosphorus uptake of floriculture crops during and after production. The ideal sand-to-potting mix ratio was determined based on pansies, petunias, and chrysanthemums' growth, flowering, and leachate content. The rate of applied phosphate and P-saturation of sand were determined from growth, flowering, and leachate data of chrysanthemum during production. Finally, the effects of the coated sand were examined on petunia and chrysanthemum growth, flowering, mineral content, and leachate composition over time in production and post-production environments. Twenty percent P-saturated iron-coated sand with low to moderate rates of applied phosphorus reduces leached phosphate with no deleterious, and usually positive, effects on the performance of floriculture crops during and after production. Iron-coated sand as a substrate amendment in container production of ornamentals has tremendous potential for advancing environmental and economic sustainability in the horticultural industry.
Speakers
SM

Savannah Mead

West Virginia University
Co-authors
EP

Eugenia Pena Yewtukhiw

West Virginia University
NA
KB

Karen Buzby

West Virginia University
NA
LL

Lance Lin

West Virginia University
NA
NW

Nicole Waterland

West Virginia University
NA
Wednesday September 25, 2024 8:45am - 9:00am HST
Nautilus

9:00am HST

FLOR 1 - Phosphorous Restriction Suppresses Growth of Containerized Coneflower
Wednesday September 25, 2024 9:00am - 9:15am HST
Containerized coneflower (Echinacea sp.) production in greenhouses and nurseries often relies on commercial fertilizers, such as 20 nitrogen (N)–4.4 phosphorous (P)–16.6 potassium (K), applied at 100 to 200 mg·L−1 N; however, increasing N concentrations proportionately increase phosphorous pentoxide (P2O5) and thus, elemental P concentrations. As such, the recommended N fertilization supplies P concentrations of 21.8 to 43.6 mg·L−1 P, exceeding plant requirements and potentially leading to excessive stem elongation and P runoff, posing ecological risks. Therefore, the objective of this study was to evaluate the effects of P concentrations on the growth, ornamental value, and tissue mineral nutrient concentrations of coneflower (E. × hybrida Sombrero® Granada Gold ‘Balsomold’). A custom soilless substrate was formulated with (by vol.) 55% aged pine bark, 35% sphagnum peatmoss, and 10% perlite, and amended with 0.6 kg·m−3 wetting agent and 3.9 kg·m−3 dolomitic limestone to achieve a final pH of ≈5.6 to 5.8. Young plants of coneflower were individually transplanted into 16.5-cm-diameter (1.7 L) containers filled with the custom soilless substrate. Upon transplanting and throughout the experiment, plants were irrigated with nutrition solutions formulated from technical grade salts providing 0, 2.5, 5, 7.5, 10, 15, 20, or 30 mg·L–1 P. Plants were grown in a glass-glazed greenhouse at 20 °C under ambient daylight supplemented with a photosynthetic photo flux density of ≈120 µmol·m–2·s–1 delivered from light-emitting diode lamps from 0600 to 2200 hr (16-h photoperiod) to achieve a daily light integral of 14 mol·m–2·d–1. At anthesis (≈69 d after transplant), data were collected. In general, plant height, plant diameter, and shoot and root dry weights were significantly influenced by P concentrations, although to different magnitudes. Quadratic plateau models demonstrated plant height, plant diameter, and shoot dry weight were maximized at 52.7 cm, 36.5 cm, and 27.2 g, respectively, with P concentrations of 18.3, 15.9, and 23.4 mg·L−1 P, respectively. Root dry weight demonstrated a positive linear correlation with increasing P concentration where roots were 74% (3.3 g) larger at a P concentration of 30 than 0 mg·L−1 P. Concentrations of ≤ 7.5 mg·L−1 P resulted low (≤ 0.2% P) leaf tissue P concentrations and ≤ 2.5 mg·L−1 P resulted in low-quality plants with incipient symptoms of P deficiency. Collectively, these results indicate that a narrow range of P concentrations may be used to control coneflower growth and mitigate P pollution.
Speakers
avatar for Garrett Owen

Garrett Owen

Extension Specialist and Assistant Professor of Sustainable Greenhouse & Nursery Systems, The Ohio State University
Dr. W. Garrett Owen is Assistant Professor and Extension Specialist of Sustainable Greenhouse and Nursery Production Systems with primary responsibilities in teaching (20%), research (30%), and Extension (50%) in the Department of Horticulture and Crop Science at The Ohio State University... Read More →
Wednesday September 25, 2024 9:00am - 9:15am HST
Nautilus

9:15am HST

FLOR 1 - Investigating Synergistic Effects of Biostimulants and Biochar on Water Use Efficiency for Containerized Celosia (Argentea cristata) and Gomphrena (Gomphrena globose) Production
Wednesday September 25, 2024 9:15am - 9:30am HST
Given the escalating demands for water and the accompanying scarcity, enhancing water use efficiency (WUE) in horticultural practices has become imperative. Research has revealed that both biochar (BC) and seaweed extract biostimulants (BS) significantly enhanced WUE in plant growth, presenting promising avenues for sustainable agricultural advancement. This study aimed to investigate the synergistic effect of BC and BS on WUE for celosia (Argentea cristata) and gomphrena (Gomphrena globose) production. Three factors were included in this experiment including 1) mixed hardwood biochar blended with commerical substrate mixes (CS) at 0%, 10%, 15%, and 25% 2) 60% or 80% irrigation and 3) 0 or 5 mL BS(seaweed extract). The physical properties of substrate, including container capacity (CC), total porosity (TP), air space (AS), bulk density (BD), and water holding capacity (WHC), and chemical properties including leachate pH and electrical conductivity (EC) were measured. Plant growth parameters including growth index (GI) and leave greenness (indicated with SPAD value), biomass, and numbers of flowers were measured biweekly. Photosynthesis rate, transpiration rate, and stomatal conductance rate were measured at 6, 7, 8 WAT. The results showed that BC rates had significant effects on CC, and BD, but no effects on either TP, AS or WHC. Celosia plants grown in the 25% BC mix treated with 5mL BS at 80% irrigation had significantly higher biomass and WUE, and both plants in the same mix (25
Speakers
avatar for Lilin Chen

Lilin Chen

Graduate Research Assistant, University of Georgia
I'm interested in biochar effect on containerized plants, especially the effect under abiotic stresses such as drought and salinity.
Co-authors
PY

Ping Yu

University of Georgia
YC

Yulong Chen

The University of Georgia
Wednesday September 25, 2024 9:15am - 9:30am HST
Nautilus

9:30am HST

FLOR 1 - Effects of Reduced Water Usage During Production on Economic Value, Growth, And Quality of Flowering Indoor Plants
Wednesday September 25, 2024 9:30am - 9:45am HST
The objective of this study was to investigate the effects of soil moisture content during greenhouse production of selected floriculture crops. Over the course of several seasons, multiple flowering species were investigated, including Euphorbia milii, Cyclamen persicum, and Begonia x tuberhybrida. Plant quality characteristics were evaluated both during the production timeframe, and after a simulated shipping and retail setting. Treatments included two soil moisture content levels (20% and 40%), which was monitored by soil moisture probes. Production timelines varied, due to the differences in species. Once the predetermined production weeks were concluded the plant went into simulated shipping and retail environment. Qualities such as growth index (GI), leaf greenness (SPAD), Leaf thickness, petiole thickness, irrigation events, and irrigation amount were measured weekly. Flower number and foliage fresh /dry weights were gathered after the two week simulated retail period. Results varied depending on the species. In all species the 20% group had less watering events, which equates to producer savings in fertigation inputs as well as labor. All species had reduced canopy size in the 20% treatment, which could equate to bench space conservation. Some of the plant quality characteristics depending on the species had similar results after simulated retail. This equates to the idea that producers could reduce water application events and volumes and generate an equal quality plant compared to the traditional watering methods, while also saving on input and labor costs.
Speakers
KH

Kaitlin Hopkins

Sam Houston State University
Wednesday September 25, 2024 9:30am - 9:45am HST
Nautilus

12:00pm HST

Ornamentals Collaboration Session
Wednesday September 25, 2024 12:00pm - 1:00pm HST
A forum for discussion of potential collaborations with regards to ornamentals – i.e. floriculture, nursery crops, breeding, turf, ornamentals industry, botanic gardens, landscape industry, orchids, etc.
Moderator
MB

Megan Bowman

Ball Horticultural Company
Wednesday September 25, 2024 12:00pm - 1:00pm HST
Coral 4 - ASHS Collaboration Center

12:44pm HST

Floriculture (FLOR)
Wednesday September 25, 2024 12:44pm - 1:55pm HST
Peperomia mauiensis can tolerate low indoor light conditions for up to 12 months - Orville Baldos
Investigating the Effect of Hydrafiber and Biochar As a Substitute for Peat-based Substrate for Zinnia (Zinnia elegans) - Lilin Chen
The Impact of Cold and Darkness on Osmanthus fragrans Flowering and Growth - Yulong Chen
Growth and Quality of Four Zinnia Cultivars Grown in Eastern South Dakota - Kristine Lang
Effects of Photoperiod Treatments on Stock Plants and Cutting Rooting of Callirhoe involucrata - James Klett
Consumer testing and surveys indicate a market for Peperomia mauiensis, an endemic succulent with potential use as an indoor potted plant - Orville Baldos
Trials of Low Elevation Tolerant Leucospermum Hybrids on Oahu, HI - Russell Galanti
Moderator
OB

Orville Baldos

Associate Researcher, University of Hawaii at Manoa
Wednesday September 25, 2024 12:44pm - 1:55pm HST
Nautilus

12:45pm HST

FLOR - Peperomia mauiensis can tolerate low indoor light conditions for up to 12 months
Wednesday September 25, 2024 12:45pm - 12:55pm HST
Peperomia mauiensis is an endemic peperomia found on west Maui, and the islands of Molokai and Lanai. Its short stature and reddish stems and leaves make it highly ornamental. To evaluate its feasibility as an indoor foliage plant, potted plants (n=6) were grown under three light levels (0.2 mol·m-2·d-1 [low], 0.4 mol·m-2·d-1 [office] and 2.9 mol·m-2·d-1 [high] for 12 hours) in airconditioned settings (22°C, 61% RH) for 1 year. Plant height and diameter as well as visual quality [1 = poor, 2 = fair (not saleable), 3 = acceptable (saleable), 4 = good, and 5 = excellent quality) were recorded 0, 3, 6 and 12 months after placing in light chambers. Height and diameter of plants between light treatments were similar at 0 (height = 5.9 cm; diameter = 10.5 cm) and 3 (height = 7.1 cm and diameter = 15.0 cm) months after the plants were placed in light chambers. Visual quality ratings also did not differ between light treatments at 0 (3.5) and after 3 (3.6) months. After 6 months, plants under office light conditions were the tallest (10.8 cm) and the widest (18.2 cm). Visual quality ratings between treatments at 6 months were similar (3.4). At 12 months, plant height between treatments were similar (8.8 cm), but office light plants exhibited the widest diameter (23.2 cm). Visual quality ratings between treatments at 12 months were similar (2.1) but was no longer acceptable. Results of the study indicate that Peperomia mauiensis can tolerate low indoor light levels and can be used as an indoor potted foliage plant.
Speakers
OB

Orville Baldos

Associate Researcher, University of Hawaii at Manoa
Co-authors
CW

Christyn Wong

Hawaii Department of Agriculture
NA
LW

Lindsey Watanabe

University of Hawaii at Manoa
NA
SA

Sherry Ann Hara

University of Hawaii at Manoa
NA
Wednesday September 25, 2024 12:45pm - 12:55pm HST
Nautilus

12:55pm HST

FLOR - Investigating the Effect of Hydrafiber and Biochar As a Substitute for Peat-based Substrate for Zinnia (Zinnia elegans) and Snapdragon (Antirrhinum majus) Production
Wednesday September 25, 2024 12:55pm - 1:05pm HST
The increasing environmental concerns and economic pressures necessitate the search for peat moss alternative as a substrate component, aiming to balance ecological sustainability with cost-effectiveness. This study aims to assess whether the biochar (BC) and hydrafiber (HF) could be a partially replacement for peat moss for zinnia and snapdragon production. Twelve substrates were formulated by either mixing BC (20%,40%, or 60% by vol) with HF (20%, 40%, or 60% (by vol), with the remaining being peat moss or blending BC (0%, 20%,40%, and 60%, by vol) with the commercial peat moss-based substrates (CS). The physical properties of substrate, including container capacity (CC), total porosity (TP), air space (AS), bulk density (BD), and water holding capacity (WHC), and chemical properties including leachate pH and electrical conductivity (EC) were measured. Plant growth parameters including growth index (GI) and leave greenness (indicated with SPAD value), biomass, and numbers of flowers were measured biweekly. The results showed all the substrate mixes had similar AP, BD and SPAD. Treatment with 20%BC and 80%CS had the highest plant growth, biomass, and numbers of flowers for both zinnia and snapdragon plants. In conclusion, BC could be used to partially (20%) replace commercial peat moss-based substrate mix for container-grown zinnia and snapdragon production.
Speakers
avatar for Lilin Chen

Lilin Chen

Graduate Research Assistant, University of Georgia
I'm interested in biochar effect on containerized plants, especially the effect under abiotic stresses such as drought and salinity.
Co-authors
PY

Ping Yu

University of Georgia
YC

Yulong Chen

The University of Georgia
Wednesday September 25, 2024 12:55pm - 1:05pm HST
Nautilus

1:05pm HST

FLOR - The Impact of Cold and Darkness on Osmanthus fragrans Flowering and Growth
Wednesday September 25, 2024 1:05pm - 1:15pm HST
Osmanthus fragrans, a culturally and economically significant plant in Asian countries, exhibits unique floral characteristics influenced by endogenous metabolites. Previous studies suggest its flowering timing and intensity may be affected by environmental factors including cold and darkness. This study aimed to investigate the effects of cold and darkness factors on the response of Osmanthus fragrans flowering and growth. This experiment included 7 cold and dark treatments (plants were sitting in the dark coolers from 0-15 days) and dark-only treatments (plants were sitting in the GH with plastic bags from 0-9 days). Plant responses were assessed based on the number of flowers, height, and width measurements on the 5th, 7th, 9th, 11th, 13th, and 15th days post-treatment. The results showed there was no significant difference in plant height across treatments. Dark-only treatment for 7 days significantly increased width growth compared to the control group (9 days), and dark-cold treatment for 5, 7, 9, 11, and 13 days. The increase in the number of flowers in the cold-dark treatment for 9 and 15 days was significantly higher than in other treatments, except for the control. In conclusion, the cold and darkness could promote flowering in Osmanthus fragrans without negatively affecting plant growth.
Speakers
avatar for Yulong Chen

Yulong Chen

The University of Georgia
Co-authors
LC

Lilin Chen

The University of Georgia
NA
PY

Ping Yu

University of Georgia
Wednesday September 25, 2024 1:05pm - 1:15pm HST
Nautilus

1:15pm HST

FLOR - Growth and Quality of Four Zinnia Cultivars Grown in Eastern South Dakota
Wednesday September 25, 2024 1:15pm - 1:25pm HST
Over the past two decades, interest in local specialty cut flower production in Eastern South Dakota has grown with several new flower farms being established across the region. However, there is currently no local, research-based information available to support growers in this new wave of interest. The purpose of this study was to assess the production and quality of four zinnia cultivars grown in Eastern South Dakota to support local specialty cut flower growers in their operations. This was a randomized complete block study with four zinnia cultivars (Zinderella Peach, Oklahoma Ivory, Queen Red Lime, and Benary’s Giant Purple) grown in 2022 and 2023. Zinnias were started in the greenhouse and then transplanted into the field in early summer each season. Harvest began each year when flowers reached maturity (July), with one harvest event taking place each week until the first frost. Harvested flowers were rated as marketable or non-marketable based on categories of stem length (18 -inch-long, 13-17.99-inch-long, 8-12.99-inch-long, and
Speakers
avatar for Kristine Lang

Kristine Lang

Assistant Professor and Extension Specialist, South Dakota State University
Co-authors
AB

Alexis Barnes

South Dakota State University
NA
EF

Ellen Fitzpatrick

South Dakota State University
NA
HV

Hannah Voye

South Dakota State University
Wednesday September 25, 2024 1:15pm - 1:25pm HST
Nautilus

1:25pm HST

FLOR - Effects of Photoperiod Treatments on Stock Plants and Cutting Rooting of Callirhoe involucrata
Wednesday September 25, 2024 1:25pm - 1:35pm HST
Effects of Photoperiod Treatments on Stock Plants and Cutting Rooting of Callirhoe involucrata James E. Klett and Ronda Koski Colorado State University Department of Horticulture and LA Production of attractive and desirable plants, native to the plains and prairies of central North America, can sometimes be limited due to problems associated with successful rooting of vegetative cuttings. Species that have a long period of bloom can be challenging to vegetatively propagate during the growing season, because sufficient juvenile (vegetatively) growth is necessary for high-quality cuttings. Callirhoe involucrata (winecups) is a native herbaceous perennial with sprawling stems, palmately divided leaves, and dark pink flowers that creates a long lasting, colorful groundcover in landscapes with limited or no supplemental irrigation. Winecups can be difficult to propagate due to seed dormancy and poor rooting of vegetative cuttings. Manipulating the growing conditions of stock plants to suppress reproductive growth may improve rooting success of vegetative cuttings. Based on previous research at Colorado State University with other ornamental perennials and programmed photoperiods, winecups were grown under three programmed photoperiods to determine if a particular photoperiod could be used to suppress reproductive growth and promote vegetative growth. The research was replicated three times, all conducted in a similar fashion, but at different times of the year. Results indicate that plants grown under 10-hour light and 8-hour light photoperiods remained vegetative longer when compared to plants grown under 12-hour photoperiod. Plants grown under 12-hour photoperiods had greater mean ending dry weight when compared to plants grown under 10 hour and 8-hour photoperiods. Cuttings harvested from plants grown under 8-hour photoperiod had higher percent rooting and greater number of roots per cutting when compared to vegetative cuttings harvested from plants grown under 12-hour photoperiod. Based on these research findings, plant propagators may be able to increase production of winecups by growing stock plants under 8-hour photoperiod.
Speakers
JK

James Klett

Colorado State University
Wednesday September 25, 2024 1:25pm - 1:35pm HST
Nautilus

1:35pm HST

FLOR - Consumer testing and surveys indicate a market for Peperomia mauiensis, an endemic succulent with potential use as an indoor potted plant
Wednesday September 25, 2024 1:35pm - 1:45pm HST
Peperomia mauiensis is an endemic succulent found on the islands of Maui, Molokai and Lanai. Its reddish stems and foliage as well as its small stature make it a potential indoor ornamental plant. To assess consumer acceptance, a public plant giveaway with surveys was conducted. Fifty-six plants in plastic and ceramic pots were distributed to the public with the completion of a survey. A six-month follow up survey was conducted to assess the condition of the plant and obtain consumer feedback. During the plant giveaway, 77% of participants completed the survey. Nearly all respondents are willing to buy the plant and recommend it to friends and co-workers. Thirty percent of respondents are willing to buy the plant for $5 in a ceramic pot and $3 to $5 for a plastic pot. Six months after the giveaway, 39.5% of initial respondents completed the follow-up survey. About half of the respondents (52.9%) reported the plant was growing healthy and vigorous. The majority of the respondents did not fertilize the plant (81.3%) and did not report any pest (94.1%) and disease (88.2%) issues. Most responded that they liked it as a houseplant (88.2%) and it was easy to maintain (82.4%). Most respondents (35.3%) were willing to buy the plant again for $5. Results of the surveys indicate that there is consumer interest in Peperomia mauiensis as a new native indoor plant.
Speakers
OB

Orville Baldos

Associate Researcher, University of Hawaii at Manoa
Co-authors
Wednesday September 25, 2024 1:35pm - 1:45pm HST
Nautilus

1:45pm HST

FLOR - Trials of Low Elevation Tolerant Leucospermum Hybrids on Oahu, HI
Wednesday September 25, 2024 1:45pm - 1:55pm HST
Leucospermum species are temperate climate plants native to South Africa and have restricted production regions in Hawaii limited to elevations of 457 m or higher. This limitation and competition for land has been partially responsible to a decline in Leucospermum production in Hawaii. Agriculture land at lower elevations is more abundant and cheaper, and is an option for growing low elevation tolerant varieties. Breeding programs at the University of Hawaii at Manoa have focused on developing hybrids that will perform to commercial standards for plant growth, yield and quality, and grow at or near sea level. 14 hybrids of Leucospermum were trialed at 152 m elevation on Oahu HI. 10 hybrids exhibited adequate survival and were selected for continued trial. Weahter, plant growth (height and width), flower count, flowering seasonality, and plant health data were collected from 2021-2023. Flower length and quality data, and vase life data were collected in 2024. Average relative humidity was 79%, average monthly rainfall was 3.53 cm, and average temperature was 21.8 C with maximum temperature of 33.4 C and low of 14.2 C. The 10 hybrids all had acceptable fitness at 500’ elevation. Some hybrids showed more fitness than others. Hybrid 602 had the highest overall average health (3.8) and highest total flower count. Hybrids 620 and 626 also showed excellent fitness as well as highest flower counts. While none of the hybrids are considered unfit for production in similar conditions, some did perform less well. Hybrid 88 and Hybrid 633 had the lowest average health at 3.0 followed closely by Hybrids 583 (3.2), 679 (3.3), and 563 (3.3). These varieties also had some of the lowest total flower counts. All of the hybrids in this study are considered potential candidates for release and continued trialing. Future work can include long term trialing of these plants, and trialing at different microclimates across the State.
Speakers
RG

Russell Galanti

Extension Educator, University of Hawaiʻi
Co-authors
AR

Alberto Ricordi

University of Hawaii at Manoa
KL

Kenneth Leonhardt

University of Hawaii at Manoa
NA
Wednesday September 25, 2024 1:45pm - 1:55pm HST
Nautilus
 


Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
Filtered by Date - 
  • Career and Professional Development
  • Colloquium
  • Competitions
  • General - Registration/Speaker Center /etc.
  • Hort Theater & Collaboration Center
  • Interactive Workshop
  • Interest Group Session
  • Keynotes and Featured Sessions
  • Meals and Tours
  • Meetings - Committee/Division/interest Group
  • Oral presentation (Individual talk)
  • Oral Sessions
  • Poster presentation (individual talk)
  • Poster Session
  • Reception
  • Ticketed Events