Loading…
Ornamental Landscape Turf clear filter
arrow_back View All Dates
Wednesday, September 25
 

9:59am HST

Ornamentals/Landscape and Turf 1 (O/LT 1)
Wednesday September 25, 2024 9:59am - 12:00pm HST
BeeGardens Mobile Application Improves Pollinator Plant Knowledge Gain in Landscaping and Gardening Courses - Sandra Wilson
Pesticide Management Decisions Affect Contamination of Nectar in Containerized Ornamental Plant Production - Patrick Wilson
Comparing Pollinator Species Richness and Abundance Between Pycnanthemum Species and Accessions - Kaitlin Swiantek
The Art and Technique of Producing Unique Lagerstroemia Plants - Donglin Zhang
Effects of Different Pruning Regimes on Growth Reallocation and Carbon Storage in Buxus microphylla var. japonica ‘Winter Gem’ - Andrew Loyd
Establishment, Growth, and Physiology of Container-Grown Trees Following Root Remediation at Planting - Bert Cregg
The Effects of Mulch Color and Depth on Soil Temperature and Light Transmission - Damon Abdi
Subterranean Termite Landscape Mulch Consumption Challenge - Edward Bush

Moderator
DZ

Donglin Zhang

University of Georgia
Wednesday September 25, 2024 9:59am - 12:00pm HST
Coral 1

10:00am HST

O/LT 1 - BeeGardens Mobile Application Improves Pollinator Plant Knowledge Gain in Landscaping and Gardening Courses
Wednesday September 25, 2024 10:00am - 10:15am HST
Florida is home to over 300 species of native wild bees, some in critical decline. To encourage gardeners to plant bee friendly species that support bee pollinators year-round, an online application called BeeGardens was built using a shared library of code and a relational database management system. The application, accessible by a mobile device or computer, enables users to quickly access over 85 bee-friendly plants that attract 12 primary bee groups; and provides tips for incorporating these into different landscape designs (https://ffl.ifas.ufl.edu/bees). The functionality and usefulness of the app was evaluated by students enrolled in two courses at the University of Florida: Florida Native Landscaping and Annual and Perennial Gardening, taught in different semesters. Before and after the semester, students were asked to report their abilities to 1) identify bee-friendly plants, 2) identify bee pollinators, and 3) design a bee-friendly garden, using a Likert scale with responses ranging from 1 (strongly disagree) to 5 (strongly agree). Means of pre- and post-test responses showed a significant perceived knowledge gain upon using the BeeGardens online application in both courses. This data was consistent with pre- and post-tested means where students were asked to identify three major pollinator plants and three major pollinators using multiple choice response options. Test scores increased by 26.3% and 37.9% in Annual and Perennial Gardening and Florida Native Landscaping, respectively. The majority of students (95.0%) agreed or strongly agreed this learning tool was organized, easy to navigate, and would use it in the future. Since its inception in March 2021, this web application has been accessed by over 26,554 new users from across Florida and beyond.
Speakers
avatar for Sandra Wilson

Sandra Wilson

Professor, University of Florida
Dr. Sandra Wilson is a Professor of Environmental Horticulture at the University of Florida’s main campus in Gainesville. She received B.S. and M.S. degrees from the University of Delaware and a Ph.D. in Plant Physiology from Clemson University. Dr. Wilson completed postdoctoral... Read More →
Co-authors
HK

Heather Kalaman

UF IFAS Extension Orange County
RM

Rachel Mallinger

University of Florida
NA
Wednesday September 25, 2024 10:00am - 10:15am HST
Coral 1

10:15am HST

O/LT 1 - Pesticide Management Decisions Affect Contamination of Nectar in Containerized Ornamental Plant Production
Wednesday September 25, 2024 10:15am - 10:30am HST
Declines in pollinator populations have gained much attention over the last decade. Exposures to pesticides are one potential contributor to these declines. Given that the ornamental plant production industry produces crops that are attractive to pollinators and that pesticide use is often integral to ensuring plants are pest-free, attention is needed to assess and possibly reduce contamination of flower nectar and pollen before plants go to market. Three major factors associated with pesticide management practices that may influence contamination of floral resources are: application method, application rate, and application timing relative to flowering. Using the systemic insecticide thiamethoxam as a model pesticide and Salvia x ‘Indigo Spires’ (Salvia longispicata x S. farinacea) as a model species, this study investigated the influence of each of these factors on contamination of nectar. Plants were treated by spray and drench methods, at low and high rates according to the pesticide label, and before flower buds formed or close to the time of floret opening. Nectar samples were collected using microcapillary tubes when all plants were uniformly flowering and thiamethoxam concentrations were analyzed by LC-MS/MS. Concentrations of thiamethoxam in nectar were highest in drench applications, regardless of application timing and rate, and exceeded published LC50s for native bees and/or honeybees. Thiamethoxam concentrations were much lower in the spray-applied treatments, but they still exceeded published LC50s for native bees and/or honeybees except for the spray treatment applied before blooming at the low rate. These results provide insight into how some pesticide management practices influence contamination of floral resources and indicate a need for developing best management practices focused on limiting thiamethoxam exposures once plants go to market. Additional studies are underway to evaluate other plant species and systemic insecticides to address gaps in knowledge.
Speakers
avatar for Patrick Wilson

Patrick Wilson

University of Florida
pesticide fate and toxicology, pollinator protection, pesticide analysis in different matrices
Co-authors
MC

Mia Cabrera

university of florida
NA
SW

sandra wilson

University of Florida
Dr. Sandra Wilson is a Professor of Environmental Horticulture at the University of Florida’s main campus in Gainesville. She received B.S. and M.S. degrees from the University of Delaware and a Ph.D. in Plant Physiology from Clemson University. Dr. Wilson completed postdoctoral... Read More →
VR

Vanesa Rostan

university of florida
NA
Wednesday September 25, 2024 10:15am - 10:30am HST
Coral 1

10:30am HST

O/LT 1 - Comparing Pollinator Species Richness and Abundance Between Pycnanthemum Species and Accessions
Wednesday September 25, 2024 10:30am - 10:45am HST
Pollinators play a crucial role in the ecosystem, human health, and the economy. However, despite the significance of pollinators, their populations are declining globally. Pycnanthemum is a marketable pollinator-attractive plant that could supplement pollinator resources in the landscape. Breeders would benefit from a comparison of the pollinator attractiveness between Pycnanthemum species and accessions. Cultivating Pycnanthemum should focus on aesthetic traits and maximizing pollinator abundance and species richness. Pollinator visitation was compared among three species and five accessions of Pycnanthemum (P. flexuosum (F), P. virginianum (V), and three accessions of P. tenuifolium (T1-T3)) using observations and capture. Lepidoptera, honey bees (Apis mellifera), Diptera, carpenter bees (Xylocopa spp.), small bees, and bumble bees (Bombus spp.) were observed most abundantly on Plant F. Plant V attracted the highest number of pollinators overall, with Apis mellifera (honey bees) accounting for more than half of the pollinator visitation. Xylocopa spp. (carpenter bees) and honey bees did not have a significant preference between the species. Plants F, T2, T3, and V attracted the greatest abundance of Diptera (flies). Wasps were most attracted to Plants T3 and V, while Bombus spp. (bumble bees) was observed most often on Plants F and V. Plant F attracted the highest number of Lepidoptera (butterflies and moths) and small bees. The species richness of pollinators did not significantly differ across Pycnanthemum species, with at least 24 to 29 different pollinator species visiting each plant. A range of factors, including olfactory cues, the morphology of plants, and accessibility of resources, may have affected pollinator preferences. Determining which Pycnanthemum species attracted an abundance and diversity of pollinators provides breeders a foundation for cultivation and conservation expectations.
Speakers
KS

Kaitlin Swiantek

Ball FloraPlant
Co-authors
JR

John Ruter

University of Georgia
Allan Armitage Endowed Professor of Horticulture and Director, Trial Gardens at UGA
Wednesday September 25, 2024 10:30am - 10:45am HST
Coral 1

10:45am HST

O/LT 1 - The Art and Technique of Producing Unique Lagerstroemia Plants
Wednesday September 25, 2024 10:45am - 11:00am HST
Crape myrtle (Lagerstroemia L.) stands as a ubiquitous presence in landscapes worldwide. Beyond its captivating smooth and exfoliating bark, a spectrum of flower colors, and impressive variable mature heights, the artistic modeling potential of crape myrtle has found favor in the high-end landscape market. Crafting a crape myrtle tree becomes a gratifying and imaginative endeavor. The preeminent modeled shapes include vases, screenings, letters, columnar forms, dragon-inspired (animalistic), symbolic representations, pavilions, tunnels, tree bonsai, ornamental root architecture, and even cartoon characters. Constructing a foundational armature from steel demands your artistic prowess and creativity, serving as the structural basis for the tree. Opting for fast-growing crape myrtle cultivars with pliable branches becomes imperative for success. Consistent pruning becomes a requisite to mold the growth pattern according to our artistic aspirations. Utilizing modeling wire facilitates the creation of the trunk and branch framework, with strategically tied crossed knots enhancing natural grafting unions. Developing distinctive Lagerstroemia plants requires a more extended timeframe and demands advanced modeling and pruning techniques compared to conventional growth processes. This production journey provides ample creative freedom and the ultimate performance should align with our artistic vision and the preferences of our clientele. Future studies should delve into plant growth dynamics and the development of trunk/branch anatomical structures to further enhance our understanding of this artistic horticultural practice.
Speakers
DZ

Donglin Zhang

University of Georgia
Co-authors
XL

Xi Li

Sichuan Agricultural University
NA
XH

Xiaoling Hou

Chongqing Yuexin Valley Ecological Agriculture Co. Ltd
NA
Wednesday September 25, 2024 10:45am - 11:00am HST
Coral 1

11:00am HST

O/LT 1 - Effects of Different Pruning Regimes on Growth Reallocation and Carbon Storage in Buxus microphylla var. japonica ‘Winter Gem’
Wednesday September 25, 2024 11:00am - 11:15am HST
Hedge shaping and size maintenance is often accomplished with electric or gas-powered shears due to a lower cost compared to hand pruning. Shearing plants arbitrarily removes the apical growing points from external portions of the shrub to achieve a desired shape and size of the plant and often results in poor quality cuts, leaving ragged ends of woody tissues or leaves. Contrarily, hand pruning makes strategic, ‘clean’ cuts often back to lateral branches to achieve these goals. Use of plant growth regulators like paclobutrazol (PBZ) can reduce the frequency of pruning and could be a useful component of a hedge management program. The purpose of this study was to investigate the effects of shearing, hand pruning, and/or PBZ application on regrowth of foliage and non-structural carbohydrates (NSCs) of ‘Winter Gem’ boxwood over time. Fifteen shrubs each per pruning type x frequency combination were pruned with bypass hand pruners (hand pruned) or gas-powered shears (sheared) in 2021, 2022, and 2023 once or twice per growing season. In addition, another 15 shrubs each were sheared once followed by an immediate application of a foliar PBZ (i.e. Trimtect®) in accordance with the label using an electric backpack or left as non-pruned controls. In 2021 and 2022, shrubs were pruned by removing 15 percent of the overall height and 20% of the overall widths in two perpendicular directions of each shrub. In 2023, pruned shrubs were cut back to the previous season’s overall height and width. Regrowth was measured by weighing the fresh biomass removed at each pruning and NSCs were measured from ten woody twigs from the exterior of each shrub using the phenol-sulfuric acid quantification method. Two and three years after pruning, shearing shrubs twice had significantly more biomass produced year over year compared to hand pruning, while PBZ treated shrubs had the least amount of regrowth. NSCs trended to be highest in shrubs that were hand pruned once or in PBZ treated shrubs, while the least in shrubs that were sheared twice. PBZ-treated shrubs had tighter clusters of internodes resulting in approximately 30% reduction in stem elongation compared to controls. The differences in growth dynamics and carbon storage across these different pruning strategies can have different long- and short-term implications in managing boxwood hedges, which will be presented here.
Speakers
AL

Andrew Loyd

Plant Pathologist, Bartlett Tree Research Laboratories
Co-authors
CL

Caitlin Littlejohn

Bartlett Tree Research Laboratories
NA
CR

Chad Rigsby

Bartlett Tree Research Laboratories/Morton Arboretum
NA
Wednesday September 25, 2024 11:00am - 11:15am HST
Coral 1

11:15am HST

O/LT 1 - Establishment, Growth, and Physiology of Container-Grown Trees Following Root Remediation at Planting
Wednesday September 25, 2024 11:15am - 11:30am HST
Root defects, especially circling roots, are a major concern when planting container-grown trees. In this study, we compared survival, crown dieback, and plant water potential of four common landscape tree species (Carpinus caroliniana, Liriodendron tulipifera, Ostrya virginiana, and Platanus × acerifolia) in response to root modifications (control, bare-root washing, shaving, and vertical slicing) prior to planting. P. × acerifolia trees were robust with respect to root correction treatments and had 100% survival except for some mortality following vertical root-ball slicing. In contrast, C. caroliniana, L. tulipifera, and O. virginiana trees had significant mortality and crown dieback in response to bare-root washing. The responses of these species to bare-root washing reflected extreme plant moisture stress immediately after planting. These three species are also considered ‘difficult to transplant’ as bare-root nursery stock. Our results suggest that trees that are generally known to be difficult to transplant as bare-root stock are poor candidates for extreme root disturbance such as bare-rooting when grown as container trees. In contrast, shaving and vertical slicing had little or no adverse effects on tree survival, crown dieback, or plant water potential.
Speakers
avatar for Bert Cregg

Bert Cregg

Michigan State University
Dr. Bert Cregg is a professor of Horticulture and Forestry at Michigan State University. He conducts research and extension programming on the physiology and management of trees in landscapes and nursery and Christmas tree production.
Co-authors
RJ

Riley Johnson

Michigan State University
NA
Wednesday September 25, 2024 11:15am - 11:30am HST
Coral 1

11:30am HST

O/LT 1 - The Effects of Mulch Color and Depth on Soil Temperature and Light Transmission
Wednesday September 25, 2024 11:30am - 11:45am HST
Mulching is a common task in the landscape industry, with materials selected to provide environmental benefits (i.e. moderating soil conditions, limiting weed growth) and aesthetic value, with colored mulches often employed to add an artistic element to landscapes. Questions arise over possible effects that mulch color may have on soil temperatures, especially when using darker materials. This research investigated the effects of a commercially available shredded mulch (dyed black, brown, or red) on soil temperature and light transmission in model research plots. A plot at the Hammond Research Station was cleared, graded, and prepared with a typical bed mix comprised of pine bark and sand. A total of 21 sub-plots were prepared, where each sub-plot had a remote temperature sensor buried at the base of the bed mix (8 cm below surface), and a temperature and light sensor placed over top of the bed mix. Mulch was applied to depths of 5 cm or 10 cm directly over the top of the temperature and light sensors, with n=3 for our control (no mulch over the bed mix), red mulch (n=3 for depth of 5 cm and n=3 for depth of 10 cm), brown mulch (n=3 for depth of 5 cm and n=3 for depth of 10 cm), and black mulch (n=3 for depth of 5 cm and n=3 for depth of 10 cm). Soil temperature conditions (both within the mulch itself, and at the base of the bed mix) as well as light transmission through the mulch layer was recorded every 30 minutes throughout a spring and summer season at the Hammond Research Station. Blank (unmulched) plots naturally experienced the most light transmission and temperature extremes. Regardless of mulch color or depth, light transmission was substantially reduced (and often eliminated) equivalently between mulch treatments. Temperature was measured both within the surface mulch layer, and 8 cm below into the subsurface bedding mix. While subsurface temperatures were effectively equivalent between all mulched plots, surface temperatures exhibited substantial differences between mulch colors and depths. Thinner mulch layers experienced more extreme surface temperature fluctuations, with mulch color influencing peak temperatures. The results of this work suggest that different mulch colors and depths have a greater influence on temperature at the immediate surface, but far more muted differences in subsurface temperatures.
Speakers
DA

Damon Abdi

Louisiana State University Agricultural Center
Co-authors
AH

Ashley Hickman

Louisiana State University Agricultural Center Hammond Research Station
NA
JF

Jeb Fields

LSU AgCenter Hammond Research Station
Wednesday September 25, 2024 11:30am - 11:45am HST
Coral 1

11:45am HST

O/LT 1 - Subterranean Termite Landscape Mulch Consumption Challenge
Wednesday September 25, 2024 11:45am - 12:00pm HST
Formosan Sub-terranean Termite Landscape Mulch Consumption Payton Floyed1, Edward Bush*2, and Qian Sun1 (1)LSU Department of Entomology and (2)LSU AgCenter, SPESS, Baton Rouge, LA Many landscapers utilize organic mulch substrates composed primarily of wood and bark, making it an ideal food source for the Formosan subterranean termite (Coptotermes formosanus). Formosan termites are one of the most destructive structural pests and recognized as one of the 100 worst invasive species in the world. While foraging, these termites can find and may be able to fully establish colonies in landscaping that uses mulch. The mulch type that attracts the most termites has not been widely investigated and continues to be an issue that needs to be determined. The objective of this research was to measure the biomass consumption by termites. Three C. formosanus colonies were used, two from New Orleans, Louisiana, and one from Gonzales, Louisiana. All were maintained in the laboratory using three total replications per experiment over a 14 d period. Five-hundred total termites (450 workers and 50 soldiers) were placed in each arena (7.5”x10”x4” plastic bin) which used a sand layered bottom for both worker and soldier termites. Each arena was covered with a dark plastic bag to mimic typical subterranean foraging conditions. Mulch particle size distribution and bulk density resulted in expected differences with crushed pine straw having the finest particle size (>50% particle size
Speakers
EB

Edward Bush

LSU AgCenter
Co-authors
QS

Qian Sun

LSU AgCenter
NA
Wednesday September 25, 2024 11:45am - 12:00pm HST
Coral 1

12:00pm HST

Ornamentals Collaboration Session
Wednesday September 25, 2024 12:00pm - 1:00pm HST
A forum for discussion of potential collaborations with regards to ornamentals – i.e. floriculture, nursery crops, breeding, turf, ornamentals industry, botanic gardens, landscape industry, orchids, etc.
Moderator
MB

Megan Bowman

Ball Horticultural Company
Wednesday September 25, 2024 12:00pm - 1:00pm HST
Coral 4 - ASHS Collaboration Center

2:00pm HST

Workshop: Evaluation Methods to Assess the Drought Tolerance of Landscape Plants in the Western United States
Wednesday September 25, 2024 2:00pm - 4:00pm HST
This workshop is to introduce the coordinated network of non-biased plant trials that has been successfully established to assess plant growth and aesthetic quality under deficit irrigation in six locations with different climate and soil types. The standard evaluation method will be highlighted to allow the audience to gain a behind-the-scenes look at the success and challenges of managing a multi-year and multi-state field project titled ‘Climate Ready Landscape Plants’. The evaluation methods employed in this project could potentially be utilized for selecting climate-resilient plants in other regions of the United States and beyond.

During their presentations, participants will be invited to: 1) Learn about the process of building cooperator and stakeholder engagement for a regional multistate project. 2) Practice using an Excel-based Irrigation Log to apply deficit irrigation using reference evapotranspiration published by local weather stations. 3) Practice evaluating selected landscape plants (pictures and/or live plants purchased from Home Depot in Honolulu) using the Rubric for Plant Aesthetic Ratings developed by the UC Landscape Plant Irrigation Trials™ team. 4) Learn the standard methods for collecting plant physiology data of selected landscape plants across multiple locations and understand the project results regarding stomatal conductance, which was collected using LI-600 Porometer/Fluorometer, LI-6800 Photosynthesis System, and/or CIRAS-3/4 Portable Photosynthesis System, etc. Ventors such as LI-COR Biosciences and PP Systems will be invited to demonstrate their equipment for plant physiological measurements (e.g. stomatal conductance) during the session. 5) Learn the standard methods for collecting plant growth and visual quality data across six locations and understand the challenges and results of common taxa tested in six diverse geographic locations. 6) Learn step-by-step how to conduct open houses and invite professionals to help evaluate plants in the field trials, as well as how to collect and use the data.

Following their presentations, the six speakers along with other team members including Dr. Lloyd Nackley, Dr. Ryan Contreras, Dr. Shital Poudyal, and Dr. Youping Sun, will be invited to join a 30-min panel discussion session to further share the success and challenges of managing a multi-year and multi-state field project. They will delve into the opportunities and challenges currently facing the Green Industry. This discussion aims to foster future collaboration for expanding current research and Extension efforts. The goal is to promote the production and utilization of low-water-use plants within the green industry and among the gardening public, especially in the context of a changing climate.

Western U.S. nursery stock, bedding, annual, and perennial plant sales exceeded $2.9 billion in 2017, with nursery stock sales from this region alone accounting for 37.6% of total U.S. sales (Agricultural Statistics, 2017). However, climate change and increased urban water demand threaten the future of the Green Industry. The Western U.S. is expected to endure extreme droughts escalating in severity due to climate change, less predictable precipitation patterns, and decreased soil moisture (Cayan et al., 2010). Urban water supplies will be further stressed by population growth. The populations of Arizona, Idaho, Nevada, and Utah increased by 1.7% or more from 2017 to 2018 (United States Census Bureau, 2018). To address these challenges, growers must supply low-water-use plants and the landscape industry must utilize them to facilitate water conservation by reducing landscape irrigation requirements. In response to this need, the USDA Agricultural Marketing Service Specialty Crop Multi-State Program funded a project titled ‘Climate Ready Landscape Plants’ in 2020 to the University of California, Davis. With the funding, trial methods developed in California have been expanded to four additional western states: Arizona, Oregon, Utah, and Washington. A coordinated network of non-biased plant trials has been established to assess plant growth and aesthetic quality under three irrigation frequencies. Low-water-use plants were identified in 2022 and 2023 and will be recommended for production and utilization. The information developed will be provided to the green industry to aid in sustainable decision-making, marketing, and business support. The evaluation methods employed in this project could potentially be utilized for selecting climate-resilient plants in other regions of the United States and beyond.

Agricultural Statistics 2017. 2017. United States Department of Agriculture National Agricultural Statistics Service. https://www.nass.usda.gov/Publications/Ag_Statistics/2017/Complete%20Ag%20Stats%202017.pdf Cayan, D.R., Das, T., Pierce, D.W., Barnett, T.P., Tyree, M., and Gershunov, A. 2010. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proceedings of the Natl. Acad. of Sci. 107 (50), 21271-21276. https://doi.org/10.1073/pnas.0912391107 United States Census Bureau. 2018. Nevada and Idaho are the nation’s fastest growing states. United States Department of Commerce. https://www.census.gov/newsroom/press-releases/2018/estimates-national-state.html

Coordinator(s)
  • Youping Sun, Utah State University, Department of Plants, Soils & Climate, Logan, Utah, United States
Moderator(s)
  • Lloyd Nackley, North Willamette Research and Extension Center Oregon State University, Aurora, OR, United States
Speaker/Participant(s)
  • Lorence Oki, Building Cooperator and Stakeholder Engagement for a Regional Multistate Project 
  • Jared Sisneroz, Coordinating a Standard Irrigation Protocol across Six Diverse Plant Trial Locations 
  • Karrie Reid, Introducing the Criteria for Plant Aesthetic Ratings
  • Soo-Hyung Kim, Coordinated Assessment of Physiological and Morphological Traits of Landscape Plants across Multiple Locations in the Western United States
  • Ursula Schuch, Assessing Plant Growth and Visual Quality - Challenges and Results of Common Taxa Tested in Six Diverse Geographic Locations
  • Natalie Levy, A Step-by-Step Guide for Organizing a Successful Open House Event
Moderator
avatar for Lloyd Nackley

Lloyd Nackley

oregon state university
Lloyd Nackley is a plant ecologist who applies a systems approach to improve nursery and greenhouse management. Nackley's research program at Oregon State University focuses on addressing four challenges facing nursery and greenhouse production in Oregon: irrigation application, pest... Read More →
Speakers
KR

Karrie Reid

Env. Hort Advisor, ret'd., University of California
Ms. Reid is a retired Area Environmental Horticulture Advisor. She developed the project at UC Davis in 2004 for her M.S. thesis research and served as the program lead.
SK

Soo-Hyung Kim

Dr. Kim is a Professor and Plant Ecophysiologist whose research focuses on how plants interact with their environment at the whole-plant scale. He is the principal investigator for the ‘Climate Ready Landscape Plants’ project at the University of Washington.
avatar for Natalie Levy

Natalie Levy

Soil Health and Organic Materials Management Advisor, UC Agriculture and Natural Resources
Dr. Levy was recently hired by UC Ag and Natural Resources as the Soil Health and Organic Materials Management Advisor serving Orange, Los Angeles, and San Diego counties. She was previously an Associate Specialist for Water Resources at the South Coast Research and Extension Center... Read More →
US

Ursula Schuch

University of Arizona
Dr. Schuch is a Professor and Extension Specialist in Environmental Horticulture in the School of Plant Sciences. Dr. Schuch’s research focuses on plant selection and management strategies to conserve water, maintain plant health, and aesthetic function. She is the principal investigator... Read More →
LO

Lorence Oki

University Of California, Davis
Dr. Oki is a UC Cooperative Extension Specialist Emeritus. In 2004, Dr. Oki initiated the trial research program that has developed into the current UC Landscape Plant Irrigation Trials™ (UCLPIT). He currently leads the California Department of Food Agriculture / USDA Specialty... Read More →
JS

Jared Sisneroz

UC Davis
Mr. Sisneroz is the project manager of the UC Landscape Plant Irrigation Trials (UCLPIT) and the ‘Climate Ready Landscape Plants’ programs. He specializes in landscape plant water-use efficiency research and water resource management.
Wednesday September 25, 2024 2:00pm - 4:00pm HST
Coral 2

4:00pm HST

AI Innovation for Horticulture - Part 2
Wednesday September 25, 2024 4:00pm - 6:00pm HST
Introduction and Overview

Speaker: Kathryn Orvis
Professor
Department of Horticulture and Landscape Architecture
Purdue University
625 Ag Mall Drive
West Lafayette, IN 47907-2010

Title: Digital Agriculture and AI on Specialty Crops Production

Description: Digital agriculture is the 4th agricultural revolution and Artificial Intelligence (AI) is part of it. Currently, in the "connected agriculture"; era, many technologies have been released on the marked regarding the use of multispectral
sensors for many purposes in agriculture. This talk is going to cover information on how to use Digital Agriculture online platforms to process multispectral imagery, and how AI can be used to collect individual in-field plant data.

Speaker: Luan Pereira de Oliveira
Assistant Professor and Precision Agriculture Extension Specialist
Department of Horticulture
University of Georgia
139 Engineering Building
2329 Rainwater Road
Tifton, GA 31793

Title: Bringing the Future of AI to the Farm.
Description: In this talk, we will cover the multitude of use cases where AI can be applied in farming – from weed detection and robotics to Generative AI-based farm assistants and Virtual Reality. We go through the industry trends of applied Artificial Intelligence and think big about farm automation for the future.

Speaker: Justin Hoffman
Chief Technology Officer of AgTechLogic


Title: From Concept to Impact: The Evolution of Moss Robotics through Industry-
University Collaboration


Description: Moss Robotics' journey began with a project focused on autonomous driving technology for tree nurseries, born out of a collaboration between Carnegie Mellon University, Robotics Institute and Hale; Hine Nursery in Tennessee. In this talk, we share the story of how we discovered the real value our solution could offer to growers, and how we refined our ideas through continuous iteration. This process transformed moss robotics from a simple concept into the company it is today. We will cover the steps of our evolution, emphasizing the practical benefits of combining academic research with industry needs to innovate effectively. Additionally, we look ahead to how emerging technologies might further influence our growth and the agricultural industry as a whole, aiming for advancements in farming practices that are both technologically sophisticated and grounded in real-world applications.

Speaker: Di Hu
Founder and CEO
Moss Robotics

Title: AI-Enhanced Computer Vision for Crop Monitoring in Controlled Environment
Agriculture


Description: Controlled environment agriculture (CEA) production remains expensive due to high operation costs. Growers can reduce production costs by nurturing crops with data, however, the data is highly diverse, and growers lack the expertise to analyze this data to derive actionable insights for informed decision-making. In addition, traditional crop monitoring is carried out manually, which makes it unfeasible to collect data daily to get actionable insights for high yields. Recent advancements in sensing and computing technologies, such as AI, computer vision, edge computing, and edge-
cloud integration, have opened opportunities to develop data-driven technologies to enhance decision-making capabilities. Integrating AI and computer vision technologies has emerged as a transformative toolset that can collect real-time plant data at high spatial and temporal resolutions, pivotal in optimizing resource management and maximizing production. The CE Engineering lab delves into cutting-edge computer vision applications within CEA, focusing on various applications, including phenotyping leafy greens, yield estimation, disease monitoring, and plant spacing optimization. This presentation will explore the details of lettuce phenotyping, disease classification, strawberry fruit classification, and yield estimation. We will delve into the technical aspects of these algorithms, including image processing techniques, machine learning models, and data integration strategies. This presentation will showcase state-of-the-art deep learning approaches, including segmentation algorithms, model training, and deep classifiers. Overall, this presentation aims to provide insights into the transformative potential of computer vision in CEA, offering a glimpse into the future of data-driven and sustainable CE production.

Speaker: Azlan Zahid
Assistant Professor,
Department of Biological and Agricultural Engineering
Texas A&M AgriLife Research
Texas A&M University System
Dallas, TX 75252, USA


Panel: 30-minute panel with the above speakers, to allow time for Q&A and discussion.
Moderator Speakers
avatar for Kent D. Kobayashi

Kent D. Kobayashi

Interim Dept. Chair, TPSS Dept., Univ. of Hawaii at Manoa
KO

Kathryn Orvis

Professor, Purdue Univ
avatar for Di Hu

Di Hu

CEO, moss robotics inc.
avatar for Justin Hoffman

Justin Hoffman

Chief Technology Officer, AgTechLogic
AZ

Azlan Zahid

Assistant Professor, Texas A&M University
AI and Robotics for CEA
Wednesday September 25, 2024 4:00pm - 6:00pm HST
Coral 3
 


Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
Filtered by Date - 
  • Career and Professional Development
  • Colloquium
  • Competitions
  • General - Registration/Speaker Center /etc.
  • Hort Theater & Collaboration Center
  • Interactive Workshop
  • Interest Group Session
  • Keynotes and Featured Sessions
  • Meals and Tours
  • Meetings - Committee/Division/interest Group
  • Oral presentation (Individual talk)
  • Oral Sessions
  • Poster presentation (individual talk)
  • Poster Session
  • Reception
  • Ticketed Events