Loading…
Coral 1 clear filter
arrow_back View All Dates
Wednesday, September 25
 

7:59am HST

Genetics and Germplasm 1 (GG 1)
Wednesday September 25, 2024 7:59am - 9:45am HST
Assembling a Reference Panel of DNA Profiles for U.S. Heirloom Apple Cultivars - Cameron Peace
Rediscovering Lost Heirloom Apple Cultivars with DNA Fingerprinting - Dongyun Lee
Air or Soil Temperature: Understanding the Cues for Dormancy Transition in Peach - Ksenija Gasic
Selection and Evaluation of Citrus Resistobiome for HLB Resistance/Tolerance - Yongping Duan
Population Genetics and Genome-wide Association Studies Provide Insights into the Genetic Basis of Persea Fruit Quality Traits - Gul Ali
Genome Assembly of Persia Americana cv. Simmonds Provides Insights on Genetic Relationships Among Avocado Hybrids Exhibiting Tolerance To Laurel Wilt - Vincent Njung'e Michael
Utilizing Haploid Pollen Grains and Diploid Leaf Tissue Genomic Sequence Data to Phase the ‘Wonderful’ Pomegranate Genome - Giuseppe Lana

Moderator
CP

Cameron Peace

Washington State University
Wednesday September 25, 2024 7:59am - 9:45am HST
Coral 1

8:00am HST

GG 1 - Assembling a Reference Panel of DNA Profiles for U.S. Heirloom Apple Cultivars
Wednesday September 25, 2024 8:00am - 8:15am HST
Heirloom apple cultivars represent an important specialty crop for producers and a genetic resource for the dessert apple industry. These cultivars are plagued with misidentifications, which hinders utilization and long-term preservation. Phenotypic identification, used for centuries, is unable to distinguish among the thousands of existing U.S. heirlooms. DNA profiling provides an objective basis for cultivar identification. Washington State University’s “MyFruitTree” (myfruittree.org), built upon the RosBREED project and with international collaborations, has accumulated a DNA profile dataset of thousands of apple individuals focused on the U.S. genepool. Users submit leaf samples for trees of interest, and MyFruitTree’s cost-recovery research opportunity determines the cultivar identity (or reveals their uniqueness and pedigree position). However, a common and valid question is, “How do you know that is the correct identity?” The core panel of robustly identified cultivars was based on public breeding germplasm, modern cultivars, and their ancestors, which were DNA profiled in the RosBREED project last decade. Since then, examined trees from collections in the U.S. and abroad have greatly expanded the number of DNA profiles with cultivar labels. But those labels are not always correct, especially when a tree is derived from only a single source. Therefore, a system was derived for assigning confidence to the cultivar labels associated with DNA profiles. Cultivar name evidence is assembled in the categories of provenance, phenotype, and genotype for both the DNA-profiled tree and the historically named cultivar, and congruence is examined. This system is applied at two levels: streamlined and comprehensive. The streamlined approach for the current DNA profile dataset efficiently determined whether each individual belongs confidently in the “Reference Panel” or is relegated to “Accessory Profiles” pending further evidence. A Reference Panel was assembled of hundreds of U.S. heirlooms (and more than a thousand close relatives from other regions). The comprehensive approach involves attention from a transdisciplinary tribunal of experts who carefully weigh evidence that an apple individual – often a proposed new discovery of an otherwise lost heirloom – is indeed a historically named cultivar. As MyFruitTree accumulates more DNA profiles submitted by cultivar collection managers and apple enthusiasts nationwide, the cultivar name assignment system is being applied to unidentified trees with strong provenance evidence of cultivar status. Establishing accurate cultivar identities of valued trees via DNA profiling is providing the critical foundation for a coordinated national effort to sustain preservation and utilization of apple crop diversity.
Speakers
CP

Cameron Peace

Washington State University
Co-authors
DL

Dongyun Lee

Washington State University
Wednesday September 25, 2024 8:00am - 8:15am HST
Coral 1

8:15am HST

GG 1 - Rediscovering Lost Heirloom Apple Cultivars with DNA Fingerprinting
Wednesday September 25, 2024 8:15am - 8:30am HST
U.S. heirloom apple cultivars are an underutilized and threatened resource, that DNA fingerprinting can help save and remobilize. These heirlooms are old cultivars that were named, clonally propagated, and distributed more than a century ago. Many heirloom cultivars have great historical value, some are still grown commercially, and others could be reintroduced to enhance rural prosperity and diversify options for consumers. While some heirloom cultivars are ancestors of modern cultivars, many others could be valuable for future breeding. However, most heirlooms have been long neglected, and thousands once documented are already extinct. Before more heirlooms disappear forever, mystery trees need to be distinguished from known cultivars, identified, and adequately preserved. Leaf samples for more than 2000 apple trees in collections, national heritage sites, old orchards, and backyards across the U.S. were crowdsourced from about 150 “MyFruitTree” submitters and DNA fingerprinted using KASP genotyping with 48 SNPs. The cultivar identity or uniqueness of each tree was determined by comparing obtained DNA profiles to a previously developed dataset of several thousand apple cultivars and individuals. Trees with replicates were prioritized into five categories according to several criteria for likelihood of representing heirloom cultivars. After removing duplicate samples, poor genotypic data, and non-apple samples, about 60% (1202) of samples were identified as cultivars and most were heirlooms. Of the unidentified samples, 85% (665) were unique, and 15% (118) of the samples represented replicated trees. We found five “Priority 1” trees (filled cultivar pedigree gaps or from three U.S. regions) and four “Priority 2” trees (detected in two regions). Hundreds more trees likely representing unknown heirlooms were also identified in single regions. Collaborators across the country, including historians and citizen scientists, can now closely examine the highest priority trees to uncover their historic cultivar names, while ensuring they are propagated so that they are preserved and valued once again. As more old apple trees are DNA fingerprinted, it is expected that current “unique” DNA profiles will be replicated in the same or other regions. Replicated trees must represent propagated, valued, and likely named cultivars, increasing the opportunities to rediscover lost heirlooms.
Speakers
DL

Dongyun Lee

Washington State University
Co-authors
AD

Amy Dunbar-Wallis

University of Colorado
NA
CP

Cameron Peace

Washington State University
JB

John Bunker

Maine Heritage Orchard
NA
RM

Rebecca McGee

USDA-ARS Pullman
NA
TL

Todd Little-Siebold

College of the Atlantic
NA
Wednesday September 25, 2024 8:15am - 8:30am HST
Coral 1

8:30am HST

GG 1 - Air or Soil Temperature: Understanding the Cues for Dormancy Transition in Peach
Wednesday September 25, 2024 8:30am - 8:45am HST
Peach trees require quantitative exposure to winter chilling (chilling requirement, CR) for spring bloom. The chill accumulation time points are determined using weather data of air temperatures between 32 and 45 ºF, using various calculation methods such as the simple chill hour (CH) method or more sophisticated methods like Utah and Chill portions (CP) that account for negations of chilling due to warm weather during the dormancy. All these methods rely on air temperature and do not consider the soil temperature during the dormancy and its effect on the tree’s perception and account for chill accumulation. Peach flowers and developing fruit are highly sensitive to freezing temperatures and are killed following even a limited exposure. In the past decade, mild winters and early spring frosts have significantly reduced or eliminated the annual peach production in the southeast U.S. Low-chill winters have become increasingly common in the southeastern peach-producing regions, and when followed by warm springs, result in early bud break and early flowering, increasing the risk of crop loss to frost. Due to a replant issue caused by Armillaria root rot, almost all acreage under the new peach orchards in the southeast, including South Carolina, are planted on berms adopting root collar excavation as a method to extend the life of orchards on infested soil. We observed significant differences between the air temperature and temperature of undisrupted soil and soil within berms at various depths (3, 6, 12 and 18 in) during dormancy. The effect of observed temperature differences on ‘Cresthaven’ tree chill accumulation calculation and transition between endo- and eco-dormancy stages was investigated by collecting vegetative bud and root tissue from all four depths at six chill hour time points (400, 500, 600, 700, 800 and 900). Preliminary data show significant gene expression differences between bud and root tissue and different gene expression profiles related to the chill accumulation in each tissue. Detailed analyses of the gene expression profiles between the tissues at the different chill accumulation stages and their effect on chilling and heat accumulation, bloom time, and the transition between the dormancy stages in peaches will be discussed.
Speakers
avatar for Ksenija Gasic

Ksenija Gasic

Clemson University
Co-authors
CS

Christopher Saski

Clemson University
NA
JL

John Lawton

Clemson University
NA
SP

Stephen Parris

Clemson University
ZL

Zhigang Li

Clemson University
NA
Wednesday September 25, 2024 8:30am - 8:45am HST
Coral 1

8:45am HST

GG 1 - Selection and Evaluation of Citrus Resistobiome for HLB Resistance/Tolerance
Wednesday September 25, 2024 8:45am - 9:00am HST
Since no Huanglongbing (HLB)-resistant citrus cultivar is available in the world, selection of elite natural mutants of commercial citrus for HLB-resistance/tolerance becomes a much more appealing breeding approach, especially in HLB-epidemic regions. In this study, we have selected and evaluated more than 30 citrus mutants from commercial citrus varieties in the past eight years in Florida. After greenhouse and field trials with high HLB disease pressure, we have identified several citrus lines with improved HLB-resistance/tolerance, which can be released or used for large scale of field trials. Our analyses of these lines have revealed that citrus resistobiome plays a role in the HLB resistance/tolerance, which involves a plant virus that can enhance plant resistance and illustrated the pursuit of breeding for biocontrol and a healthy microbiome. Meanwhile, we revealed that transposons have driven the selection and diversification of sweet orange (SWO). We identified six transposon families with up to 8900-fold activity increases in modern sweet orange cultivars tracing back to a common ancestor ~500 years ago. Notably, these six families of transposons contribute significantly to the formation of major cultivar groups, with frequent independent activations or accelerations observed in the breeding history of SWO. We will discuss the molecular mechanisms underlying the improved HLB-resistance, especially how the resistobiome plays a role in the improved HLB resistance/tolerance, and how to implement this new approach by utilizing and expanding the breeding of citrus resistobiome for the control of citrus HLB.
Speakers
YD

Yongping Duan

USDA ARS
NA
Co-authors
BW

Bo Wu

Clemson University
NA
DZ

Desen Zheng

USDA ARS
NA
FL

Feng Luo

Clemson University
NA
ZD

Zhanao Deng

University of Florida
Wednesday September 25, 2024 8:45am - 9:00am HST
Coral 1

9:00am HST

GG 1 - Population Genetics and Genome-wide Association Studies Provide Insights into the Genetic Basis of Persea Fruit Quality Traits
Wednesday September 25, 2024 9:00am - 9:15am HST
Avocado (Persea americana) is renowned for its high nutritional value and its global consumption is steadily increasing. Currently, only a few cultivars with limited genetic variability are cultivated, and there is a need for developing new avocado cultivars with enhanced horticultural, fruit quality and nutritional traits as well as resistance to diseases and pests. Application of marker assisted selection can significantly accelerate breeding new avocado varieties, which can take 15 - 20 years using traditional breeding methods. Towards the application of molecular markers in avocado breeding, in this report, genome-wide association studies (GWAS) of nine fruit quality traits of a diversity panel of 110 avocado accessions were explored using 4,706 high-quality single nucleotide polymorphisms (SNPs) using multiple models. In addition, genetic diversity and population structure were also investigated, which unveiled three main populations corresponding to the three major avocado botanical races representing Mexican, West Indian, and Guatemalan ecotypes. Phylogenetic study and quantitative genetic analyses suggested a closer relationship between the Guatemalan and West Indian races compared to the Mexican race. Genome-wide association study revealed twelve markers distributed over eleven genomic regions strongly associated with fruit quality traits including fruit color, shape, taste, and skin texture. Annotation analyses of these genomic regions revealed candidate genes affecting these traits. These findings contribute to a comprehensive understanding of the genetic composition of avocado germplasm, which will be useful for identifying genes governing fruit quality traits as well as for accelerating breeding and parent selection efforts in the avocado breeding pipeline.
Speakers
GA

Gul Ali

Geneticist/Lead Scientist, USDA ARS Subtropical Horticulture Research Station
Co-authors
BF

Barbie Freeman

USDA ARS Subtropical Horticulture Research Station
NA
JL

Jin Li

USDA ARS Subtropical Horticulture Research Station
NA
SE

Shamseldeen Eltaher

USDA ARS Subtropical Horticulture Research Station
NA
Wednesday September 25, 2024 9:00am - 9:15am HST
Coral 1

9:15am HST

GG 1 - Genome Assembly of Persia Americana cv. Simmonds Provides Insights on Genetic Relationships Among Avocado Hybrids Exhibiting Tolerance To Laurel Wilt
Wednesday September 25, 2024 9:15am - 9:30am HST
Avocado (Persea americana) is the major fruit cultivated in southern Florida counties with a value exceeding 20 million dollars annually. While production in other regions is dominated by the Hass cultivar, south Florida is unique in production of the increasingly popular, green-skinned varieties. Recently, the avocado industry in South Florida has been devastated by laurel wilt (LW), an insect-disease complex spread by Raffaelea lauricola (Rf), a fungal symbiont of redbay ambrosia beetle (Xyleborus glabratus Eichhoff). Current management practices including prophylactic fungicide injections, tree rejuvenation and ambrosia beetle population reduction are costly and onerous . Unfortunately, no mature avocado trees tolerant to LW are available to growers and genetic mechanism of LW tolerance observed in some avocado seedlings is unknown. In this study, a chromosomal genome of avocado cv. ‘Simmonds’, a ‘West Indian’ (Lowland) ecotype was assembled from Pacific Biosciences HiFi reads. The genome assembly contained 451 scaffolds spanning 98.89% of the avocado genome, a N50 of 82.34MB and a BUSCO score of 95%. This assembly served as a reference genome to generate 9198 genome wide single nucleotide polymorphisms (SNPs) using genotyping by sequencing (GBS) reads of a germplasm collection comprising 80 accessions of three avocado ecotypes (Mexican, Guatemalan and West Indian) and 18 novel hybrids exhibiting seedling tolerance to LW. Phylogentic analyses revealed three major clusters with majority of LW tolerant seedlings clustering amongst Hass derived hybrids as well as cultivars belonging to Mexican and Guatemalan ecotypes such as 'Winter Mexican', and 'Ettinger'. This work provides genomic resources for characterization of genetic tolerance of LW in avocado germplasm collections and is a significant step in developing LW tolerant hybrids to support local avocado industry.
Speakers
VN

Vincent Njung'e Michael

University of Florida
Co-authors
JH

Jonathan H Crane

University of Florida, TREC
RG

Romina Gazis

University of Florida
NA
XW

Xingbo Wu

Chair 2023-2024, University of Florida
NA
Wednesday September 25, 2024 9:15am - 9:30am HST
Coral 1

9:30am HST

GG 1 - Utilizing Haploid Pollen Grains and Diploid Leaf Tissue Genomic Sequence Data to Phase the ‘Wonderful’ Pomegranate Genome
Wednesday September 25, 2024 9:30am - 9:45am HST
The scientific and commercial interest in pomegranate (Punica granatum L.) cultivation has increased noticeably during the last two decades. Because of the high concentration of bioactive compounds and its nutraceutical properties, pomegranate has been defined as a super food. The consumption of pomegranate juice or arils has been related to several possible benefits on human health. Recent studies have highlighted an antioxidant and anti-inflammatory activity of this fruit which seem to prevent cardiovascular, neoplastic, neurological, metabolic, and intestinal disease. The areas of cultivation of this crop are exposed to current and future challenges like long term-drought conditions and invasive pests and diseases. Increasing the biodiversity of pomegranate has been proposed has the main strategy to reduce the risk of food system vulnerability related to monoculture and the valorization of marginal land. In order to develop advanced genetic tools to improve pomegranate breeding program efficiency we present the de novo sequencing of the ‘Wonderful’ pomegranate genome. DNA isolated from diploid leaf tissues was sequenced using long read sequencing technology (PacBio), while DNA extracted from haploid pollen grains was sequenced using short reads (Illumina). Genomic data from single haploid gamete cells were analyzed using the R package called ‘Hapi’. This allowed to infer chromosomal haplotypes obtaining a higher resolution for DNA variants detection and investigating recombination events in single gametes. Although ‘Wonderful’ represents the industry standard in the United States, several cultivars with desirable traits, such as low acidity and soft seednesses, have been identified in the national germplasm. The results of this study will provide the genomic data required to investigate differences among cultivars and create trait-gene associations. This will allow breeders to facilitate the integration of desired quality traits into new germplasm resources.
Speakers
GL

Giuseppe Lana

University of Florida
Co-authors
DS

Danelle Seymour

UC-Riverside
NA
DM

Donald Merhaut

UC-Riverside
NA
HQ

Han Qu

UC-Riverside
NA
JC

John Chater

University of Florida
MR

Mikeal Roose

UC-Riverside
NA
RT

Ryan Traband

UC- Riverside
NA
TB

Taylor Beaullieau

UC-Riverside
NA
ZJ

Zhenyu Jia

UC-Riverside
NA
Wednesday September 25, 2024 9:30am - 9:45am HST
Coral 1

9:59am HST

Ornamentals/Landscape and Turf 1 (O/LT 1)
Wednesday September 25, 2024 9:59am - 12:00pm HST
BeeGardens Mobile Application Improves Pollinator Plant Knowledge Gain in Landscaping and Gardening Courses - Sandra Wilson
Pesticide Management Decisions Affect Contamination of Nectar in Containerized Ornamental Plant Production - Patrick Wilson
Comparing Pollinator Species Richness and Abundance Between Pycnanthemum Species and Accessions - Kaitlin Swiantek
The Art and Technique of Producing Unique Lagerstroemia Plants - Donglin Zhang
Effects of Different Pruning Regimes on Growth Reallocation and Carbon Storage in Buxus microphylla var. japonica ‘Winter Gem’ - Andrew Loyd
Establishment, Growth, and Physiology of Container-Grown Trees Following Root Remediation at Planting - Bert Cregg
The Effects of Mulch Color and Depth on Soil Temperature and Light Transmission - Damon Abdi
Subterranean Termite Landscape Mulch Consumption Challenge - Edward Bush

Moderator
DZ

Donglin Zhang

University of Georgia
Wednesday September 25, 2024 9:59am - 12:00pm HST
Coral 1

10:00am HST

O/LT 1 - BeeGardens Mobile Application Improves Pollinator Plant Knowledge Gain in Landscaping and Gardening Courses
Wednesday September 25, 2024 10:00am - 10:15am HST
Florida is home to over 300 species of native wild bees, some in critical decline. To encourage gardeners to plant bee friendly species that support bee pollinators year-round, an online application called BeeGardens was built using a shared library of code and a relational database management system. The application, accessible by a mobile device or computer, enables users to quickly access over 85 bee-friendly plants that attract 12 primary bee groups; and provides tips for incorporating these into different landscape designs (https://ffl.ifas.ufl.edu/bees). The functionality and usefulness of the app was evaluated by students enrolled in two courses at the University of Florida: Florida Native Landscaping and Annual and Perennial Gardening, taught in different semesters. Before and after the semester, students were asked to report their abilities to 1) identify bee-friendly plants, 2) identify bee pollinators, and 3) design a bee-friendly garden, using a Likert scale with responses ranging from 1 (strongly disagree) to 5 (strongly agree). Means of pre- and post-test responses showed a significant perceived knowledge gain upon using the BeeGardens online application in both courses. This data was consistent with pre- and post-tested means where students were asked to identify three major pollinator plants and three major pollinators using multiple choice response options. Test scores increased by 26.3% and 37.9% in Annual and Perennial Gardening and Florida Native Landscaping, respectively. The majority of students (95.0%) agreed or strongly agreed this learning tool was organized, easy to navigate, and would use it in the future. Since its inception in March 2021, this web application has been accessed by over 26,554 new users from across Florida and beyond.
Speakers
avatar for Sandra Wilson

Sandra Wilson

Professor, University of Florida
Dr. Sandra Wilson is a Professor of Environmental Horticulture at the University of Florida’s main campus in Gainesville. She received B.S. and M.S. degrees from the University of Delaware and a Ph.D. in Plant Physiology from Clemson University. Dr. Wilson completed postdoctoral... Read More →
Co-authors
HK

Heather Kalaman

UF IFAS Extension Orange County
RM

Rachel Mallinger

University of Florida
NA
Wednesday September 25, 2024 10:00am - 10:15am HST
Coral 1

10:15am HST

O/LT 1 - Pesticide Management Decisions Affect Contamination of Nectar in Containerized Ornamental Plant Production
Wednesday September 25, 2024 10:15am - 10:30am HST
Declines in pollinator populations have gained much attention over the last decade. Exposures to pesticides are one potential contributor to these declines. Given that the ornamental plant production industry produces crops that are attractive to pollinators and that pesticide use is often integral to ensuring plants are pest-free, attention is needed to assess and possibly reduce contamination of flower nectar and pollen before plants go to market. Three major factors associated with pesticide management practices that may influence contamination of floral resources are: application method, application rate, and application timing relative to flowering. Using the systemic insecticide thiamethoxam as a model pesticide and Salvia x ‘Indigo Spires’ (Salvia longispicata x S. farinacea) as a model species, this study investigated the influence of each of these factors on contamination of nectar. Plants were treated by spray and drench methods, at low and high rates according to the pesticide label, and before flower buds formed or close to the time of floret opening. Nectar samples were collected using microcapillary tubes when all plants were uniformly flowering and thiamethoxam concentrations were analyzed by LC-MS/MS. Concentrations of thiamethoxam in nectar were highest in drench applications, regardless of application timing and rate, and exceeded published LC50s for native bees and/or honeybees. Thiamethoxam concentrations were much lower in the spray-applied treatments, but they still exceeded published LC50s for native bees and/or honeybees except for the spray treatment applied before blooming at the low rate. These results provide insight into how some pesticide management practices influence contamination of floral resources and indicate a need for developing best management practices focused on limiting thiamethoxam exposures once plants go to market. Additional studies are underway to evaluate other plant species and systemic insecticides to address gaps in knowledge.
Speakers
avatar for Patrick Wilson

Patrick Wilson

University of Florida
pesticide fate and toxicology, pollinator protection, pesticide analysis in different matrices
Co-authors
MC

Mia Cabrera

university of florida
NA
SW

sandra wilson

University of Florida
Dr. Sandra Wilson is a Professor of Environmental Horticulture at the University of Florida’s main campus in Gainesville. She received B.S. and M.S. degrees from the University of Delaware and a Ph.D. in Plant Physiology from Clemson University. Dr. Wilson completed postdoctoral... Read More →
VR

Vanesa Rostan

university of florida
NA
Wednesday September 25, 2024 10:15am - 10:30am HST
Coral 1

10:30am HST

O/LT 1 - Comparing Pollinator Species Richness and Abundance Between Pycnanthemum Species and Accessions
Wednesday September 25, 2024 10:30am - 10:45am HST
Pollinators play a crucial role in the ecosystem, human health, and the economy. However, despite the significance of pollinators, their populations are declining globally. Pycnanthemum is a marketable pollinator-attractive plant that could supplement pollinator resources in the landscape. Breeders would benefit from a comparison of the pollinator attractiveness between Pycnanthemum species and accessions. Cultivating Pycnanthemum should focus on aesthetic traits and maximizing pollinator abundance and species richness. Pollinator visitation was compared among three species and five accessions of Pycnanthemum (P. flexuosum (F), P. virginianum (V), and three accessions of P. tenuifolium (T1-T3)) using observations and capture. Lepidoptera, honey bees (Apis mellifera), Diptera, carpenter bees (Xylocopa spp.), small bees, and bumble bees (Bombus spp.) were observed most abundantly on Plant F. Plant V attracted the highest number of pollinators overall, with Apis mellifera (honey bees) accounting for more than half of the pollinator visitation. Xylocopa spp. (carpenter bees) and honey bees did not have a significant preference between the species. Plants F, T2, T3, and V attracted the greatest abundance of Diptera (flies). Wasps were most attracted to Plants T3 and V, while Bombus spp. (bumble bees) was observed most often on Plants F and V. Plant F attracted the highest number of Lepidoptera (butterflies and moths) and small bees. The species richness of pollinators did not significantly differ across Pycnanthemum species, with at least 24 to 29 different pollinator species visiting each plant. A range of factors, including olfactory cues, the morphology of plants, and accessibility of resources, may have affected pollinator preferences. Determining which Pycnanthemum species attracted an abundance and diversity of pollinators provides breeders a foundation for cultivation and conservation expectations.
Speakers
KS

Kaitlin Swiantek

Ball FloraPlant
Co-authors
JR

John Ruter

University of Georgia
Allan Armitage Endowed Professor of Horticulture and Director, Trial Gardens at UGA
Wednesday September 25, 2024 10:30am - 10:45am HST
Coral 1

10:45am HST

O/LT 1 - The Art and Technique of Producing Unique Lagerstroemia Plants
Wednesday September 25, 2024 10:45am - 11:00am HST
Crape myrtle (Lagerstroemia L.) stands as a ubiquitous presence in landscapes worldwide. Beyond its captivating smooth and exfoliating bark, a spectrum of flower colors, and impressive variable mature heights, the artistic modeling potential of crape myrtle has found favor in the high-end landscape market. Crafting a crape myrtle tree becomes a gratifying and imaginative endeavor. The preeminent modeled shapes include vases, screenings, letters, columnar forms, dragon-inspired (animalistic), symbolic representations, pavilions, tunnels, tree bonsai, ornamental root architecture, and even cartoon characters. Constructing a foundational armature from steel demands your artistic prowess and creativity, serving as the structural basis for the tree. Opting for fast-growing crape myrtle cultivars with pliable branches becomes imperative for success. Consistent pruning becomes a requisite to mold the growth pattern according to our artistic aspirations. Utilizing modeling wire facilitates the creation of the trunk and branch framework, with strategically tied crossed knots enhancing natural grafting unions. Developing distinctive Lagerstroemia plants requires a more extended timeframe and demands advanced modeling and pruning techniques compared to conventional growth processes. This production journey provides ample creative freedom and the ultimate performance should align with our artistic vision and the preferences of our clientele. Future studies should delve into plant growth dynamics and the development of trunk/branch anatomical structures to further enhance our understanding of this artistic horticultural practice.
Speakers
DZ

Donglin Zhang

University of Georgia
Co-authors
XL

Xi Li

Sichuan Agricultural University
NA
XH

Xiaoling Hou

Chongqing Yuexin Valley Ecological Agriculture Co. Ltd
NA
Wednesday September 25, 2024 10:45am - 11:00am HST
Coral 1

11:00am HST

O/LT 1 - Effects of Different Pruning Regimes on Growth Reallocation and Carbon Storage in Buxus microphylla var. japonica ‘Winter Gem’
Wednesday September 25, 2024 11:00am - 11:15am HST
Hedge shaping and size maintenance is often accomplished with electric or gas-powered shears due to a lower cost compared to hand pruning. Shearing plants arbitrarily removes the apical growing points from external portions of the shrub to achieve a desired shape and size of the plant and often results in poor quality cuts, leaving ragged ends of woody tissues or leaves. Contrarily, hand pruning makes strategic, ‘clean’ cuts often back to lateral branches to achieve these goals. Use of plant growth regulators like paclobutrazol (PBZ) can reduce the frequency of pruning and could be a useful component of a hedge management program. The purpose of this study was to investigate the effects of shearing, hand pruning, and/or PBZ application on regrowth of foliage and non-structural carbohydrates (NSCs) of ‘Winter Gem’ boxwood over time. Fifteen shrubs each per pruning type x frequency combination were pruned with bypass hand pruners (hand pruned) or gas-powered shears (sheared) in 2021, 2022, and 2023 once or twice per growing season. In addition, another 15 shrubs each were sheared once followed by an immediate application of a foliar PBZ (i.e. Trimtect®) in accordance with the label using an electric backpack or left as non-pruned controls. In 2021 and 2022, shrubs were pruned by removing 15 percent of the overall height and 20% of the overall widths in two perpendicular directions of each shrub. In 2023, pruned shrubs were cut back to the previous season’s overall height and width. Regrowth was measured by weighing the fresh biomass removed at each pruning and NSCs were measured from ten woody twigs from the exterior of each shrub using the phenol-sulfuric acid quantification method. Two and three years after pruning, shearing shrubs twice had significantly more biomass produced year over year compared to hand pruning, while PBZ treated shrubs had the least amount of regrowth. NSCs trended to be highest in shrubs that were hand pruned once or in PBZ treated shrubs, while the least in shrubs that were sheared twice. PBZ-treated shrubs had tighter clusters of internodes resulting in approximately 30% reduction in stem elongation compared to controls. The differences in growth dynamics and carbon storage across these different pruning strategies can have different long- and short-term implications in managing boxwood hedges, which will be presented here.
Speakers
AL

Andrew Loyd

Plant Pathologist, Bartlett Tree Research Laboratories
Co-authors
CL

Caitlin Littlejohn

Bartlett Tree Research Laboratories
NA
CR

Chad Rigsby

Bartlett Tree Research Laboratories/Morton Arboretum
NA
Wednesday September 25, 2024 11:00am - 11:15am HST
Coral 1

11:15am HST

O/LT 1 - Establishment, Growth, and Physiology of Container-Grown Trees Following Root Remediation at Planting
Wednesday September 25, 2024 11:15am - 11:30am HST
Root defects, especially circling roots, are a major concern when planting container-grown trees. In this study, we compared survival, crown dieback, and plant water potential of four common landscape tree species (Carpinus caroliniana, Liriodendron tulipifera, Ostrya virginiana, and Platanus × acerifolia) in response to root modifications (control, bare-root washing, shaving, and vertical slicing) prior to planting. P. × acerifolia trees were robust with respect to root correction treatments and had 100% survival except for some mortality following vertical root-ball slicing. In contrast, C. caroliniana, L. tulipifera, and O. virginiana trees had significant mortality and crown dieback in response to bare-root washing. The responses of these species to bare-root washing reflected extreme plant moisture stress immediately after planting. These three species are also considered ‘difficult to transplant’ as bare-root nursery stock. Our results suggest that trees that are generally known to be difficult to transplant as bare-root stock are poor candidates for extreme root disturbance such as bare-rooting when grown as container trees. In contrast, shaving and vertical slicing had little or no adverse effects on tree survival, crown dieback, or plant water potential.
Speakers
avatar for Bert Cregg

Bert Cregg

Michigan State University
Dr. Bert Cregg is a professor of Horticulture and Forestry at Michigan State University. He conducts research and extension programming on the physiology and management of trees in landscapes and nursery and Christmas tree production.
Co-authors
RJ

Riley Johnson

Michigan State University
NA
Wednesday September 25, 2024 11:15am - 11:30am HST
Coral 1

11:30am HST

O/LT 1 - The Effects of Mulch Color and Depth on Soil Temperature and Light Transmission
Wednesday September 25, 2024 11:30am - 11:45am HST
Mulching is a common task in the landscape industry, with materials selected to provide environmental benefits (i.e. moderating soil conditions, limiting weed growth) and aesthetic value, with colored mulches often employed to add an artistic element to landscapes. Questions arise over possible effects that mulch color may have on soil temperatures, especially when using darker materials. This research investigated the effects of a commercially available shredded mulch (dyed black, brown, or red) on soil temperature and light transmission in model research plots. A plot at the Hammond Research Station was cleared, graded, and prepared with a typical bed mix comprised of pine bark and sand. A total of 21 sub-plots were prepared, where each sub-plot had a remote temperature sensor buried at the base of the bed mix (8 cm below surface), and a temperature and light sensor placed over top of the bed mix. Mulch was applied to depths of 5 cm or 10 cm directly over the top of the temperature and light sensors, with n=3 for our control (no mulch over the bed mix), red mulch (n=3 for depth of 5 cm and n=3 for depth of 10 cm), brown mulch (n=3 for depth of 5 cm and n=3 for depth of 10 cm), and black mulch (n=3 for depth of 5 cm and n=3 for depth of 10 cm). Soil temperature conditions (both within the mulch itself, and at the base of the bed mix) as well as light transmission through the mulch layer was recorded every 30 minutes throughout a spring and summer season at the Hammond Research Station. Blank (unmulched) plots naturally experienced the most light transmission and temperature extremes. Regardless of mulch color or depth, light transmission was substantially reduced (and often eliminated) equivalently between mulch treatments. Temperature was measured both within the surface mulch layer, and 8 cm below into the subsurface bedding mix. While subsurface temperatures were effectively equivalent between all mulched plots, surface temperatures exhibited substantial differences between mulch colors and depths. Thinner mulch layers experienced more extreme surface temperature fluctuations, with mulch color influencing peak temperatures. The results of this work suggest that different mulch colors and depths have a greater influence on temperature at the immediate surface, but far more muted differences in subsurface temperatures.
Speakers
DA

Damon Abdi

Louisiana State University Agricultural Center
Co-authors
AH

Ashley Hickman

Louisiana State University Agricultural Center Hammond Research Station
NA
JF

Jeb Fields

LSU AgCenter Hammond Research Station
Wednesday September 25, 2024 11:30am - 11:45am HST
Coral 1

11:45am HST

O/LT 1 - Subterranean Termite Landscape Mulch Consumption Challenge
Wednesday September 25, 2024 11:45am - 12:00pm HST
Formosan Sub-terranean Termite Landscape Mulch Consumption Payton Floyed1, Edward Bush*2, and Qian Sun1 (1)LSU Department of Entomology and (2)LSU AgCenter, SPESS, Baton Rouge, LA Many landscapers utilize organic mulch substrates composed primarily of wood and bark, making it an ideal food source for the Formosan subterranean termite (Coptotermes formosanus). Formosan termites are one of the most destructive structural pests and recognized as one of the 100 worst invasive species in the world. While foraging, these termites can find and may be able to fully establish colonies in landscaping that uses mulch. The mulch type that attracts the most termites has not been widely investigated and continues to be an issue that needs to be determined. The objective of this research was to measure the biomass consumption by termites. Three C. formosanus colonies were used, two from New Orleans, Louisiana, and one from Gonzales, Louisiana. All were maintained in the laboratory using three total replications per experiment over a 14 d period. Five-hundred total termites (450 workers and 50 soldiers) were placed in each arena (7.5”x10”x4” plastic bin) which used a sand layered bottom for both worker and soldier termites. Each arena was covered with a dark plastic bag to mimic typical subterranean foraging conditions. Mulch particle size distribution and bulk density resulted in expected differences with crushed pine straw having the finest particle size (>50% particle size
Speakers
EB

Edward Bush

LSU AgCenter
Co-authors
QS

Qian Sun

LSU AgCenter
NA
Wednesday September 25, 2024 11:45am - 12:00pm HST
Coral 1

12:19pm HST

Growth Chambers and Controlled Environments - (CE)
Wednesday September 25, 2024 12:19pm - 1:30pm HST
Urban Agriculture Efficiency: A Year-Long Evaluation of Kale Yield and Energy Use in a Shipping Container Farm - Skyler Brazel
Production of Red Leaf Lettuce at Vertical Farm Equipped with Blue LED According to Anthocyanin Concentration and Its Gene Analysis - Junjira Satitmunnaithum
Interlighting Improves Tomato Yield in Northern Greenhouses - Meriam Karlsson
Effect of low root-zone temperature and UV radiation on growth and gene expression of secondary metabolite pathways in Nicotiana benthamiana - KiHo Son
Effects of Short-Wavelength UV-B, UV-A, and Blue Light on the Rose Flower Color Transition Phenotype - Navdeep Kaur
Arduino Uno Can Reliably Log Substrate Moisture from a Bus of Digital Sensors and Control a Drip-Irrigation System - Stephanie E Burnett
The Effect of Climate Change on Plants: A Case Study with Wheat - Kira Webster

Moderator
SB

Skyler Brazel

University of Tennessee - Knoxville
Wednesday September 25, 2024 12:19pm - 1:30pm HST
Coral 1

12:20pm HST

CE - Urban Agriculture Efficiency: A Year-Long Evaluation of Kale Yield and Energy Use in a Shipping Container Farm
Wednesday September 25, 2024 12:20pm - 12:30pm HST
Urban expansion is a threat to agricultural land. As cities increase in size and residential areas are being built on arable land, a new solution to growing food in urban area needs to be considered. Shipping container farms are designed to grow a high number of plants in a small area. These farms are programmable to fit the environmental parameters that are optimal for each type of crop. In this experiment, ‘Toscano’ kale was grown inside the farm and harvested weekly for one year to simulate farm production. The average day/night temperature in the farm was 22.8C and 15.6C with a photoperiod of 20 hours. Sole sourced lighting was supplied by light emitting diodes with an 80:20 red:blue ratio and an intensity of 100 mol . m -2. s -1 for a daily light integral of 7.2 mol . d -1 . Electrical energy use of the farm was collected on three categories of energy usage: Lighting, HVAC, and all Other Energy usage. Seeds were sown four weeks prior to transplant. Plants were transplanted weekly into vertical channels and harvested 12 weeks after sowing. This experiment was a complete block design with block nested in time. Yield data was collected at time of harvest, including plant number, fresh mass, dry mass, plant height, canopy area, and leaf number. The mean number of plants per replication was 320. The mean fresh mass per plant by block was 43.34g, 48.84g, 53.17g, 59.15g, 57.88g, and 53.29g, respectively, while mean dry mass was 3.31g, 3.66g, 3.94g, 4.42g, 4.3g, and 4.08g, respectively. Daily mean lighting and other energy consumption exhibited no variation across all 48 harvests. Daily mean HVAC energy consumption varied based on outdoor environmental conditions, with increased usage during summer months and a maximum of 33.53 kWh/day. Overall, fluctuations across mean fresh mass needs to be investigated further as the optimal harvest date for this farm may occur prior to 12 weeks, for both plant yield and energy consumption levels.
Speakers
SB

Skyler Brazel

University of Tennessee - Knoxville
Co-authors
CS

Carl Sams

University of Tennessee
KR

Katelynn Rector

University of Tennessee - Knoxville
NA
Wednesday September 25, 2024 12:20pm - 12:30pm HST
Coral 1

12:30pm HST

CE - Production of Red Leaf Lettuce at Vertical Farm Equipped with Blue LED According to Anthocyanin Concentration and Its Ge
Wednesday September 25, 2024 12:30pm - 12:40pm HST
At the last ASHS annual conference, I, Satitmunnaithum et al., (2023), presented our study on the effect of blue and white LED light ratio on red leaf lettuce, however, the effect of blue LED on red coloration during its growth is still unclear. Thus, at this year’s conference, we aim to clarify the mechanisms of red coloration under blue LED based on anthocyanin biosynthesis gene analysis and its content in vertical farming condition to stabilize its production for high market demand. To elucidate the effect of blue LED light on the red coloration of red leaf lettuce, green and red leaf lettuce (Lactuca sativa L.) were selected for this study. Both were hydroponically cultivated at the Advanced Plant Factory Research Center at Meiji University, Japan. The cultivation temperature was set at 22 ℃ with a humidity of 60%. Seeds were sown under white LED for 24 hours. Ten-day-old seedlings were transplanted to different light conditions: white LED and blue LED. The photoperiod was set for 16 hours. The nutrient solution was supplied at an EC of 1.6 mS/m^2 with a pH of 6.0 ± 0.5. Both light treatments had a PPFD of 100-120 µmol/m^2/s. After 20, 25, and 30 days of transplantation, lettuces were harvested. The red area on leaf lettuce, along with the total anthocyanin content and its precursors, as well as the expressions of anthocyanin biosynthesis-related genes such as ANS, CHS, bHLH, DFR, and HY5, were evaluated. Blue light shows a large red area on red leaf lettuce at most of the development stages resulting in a high red area percentage, while green leaf lettuce remained completely green in both light conditions. The interested genes were upregulated mostly in blue light irradiated red leaf lettuce which led to high total anthocyanin content. This can be assumed that blue LED light enhances anthocyanin synthesis in red leaf lettuce which can contribute to the stable production of red leaf lettuce in vertical farms.
Speakers
JS

Junjira Satitmunnaithum

Specially-appointed lecturer, Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University , Japan
Co-authors
CI

Chiharu Inoue

Daiwa House Co. Ltd.,
NA
TO

Takao Otsuka

Daiwa House Co. Ltd.,
NA
TI

Takashi Ikeda

School of Agriculture, Meiji university
NA
Wednesday September 25, 2024 12:30pm - 12:40pm HST
Coral 1

12:40pm HST

CE - Interlighting Improves Tomato Yield in Northern Greenhouses
Wednesday September 25, 2024 12:40pm - 12:50pm HST
Low natural light and high heating costs limit northern winter greenhouse production. Technology advancements now offer opportunities to improve delivery of light to and within crop canopies. The greenhouse tomato cultivars Bigdena and Beorange were chosen to evaluate high pressure sodium irradiance with LED interlighting. Plants were grown in a high-wire drip irrigation system using dutch (bato) buckets (17.7 L volume) filled with a 50/50 mixture of perlite and a peatlite medium (Pro-Mix BX). The containers were placed in alternating rows across a drainpipe. Seeds were sown on 8 Sep and two seedlings were transplanted into each container 38 d later (17 Oct). Day temperature was 22 ± 2°C and reduced to 18 ± 2°C during the night. Lower leaves were removed as fruit ripened and the study was terminated at a plant height of ~250 cm (128 d from transplanting). The photoperiod was 18-h. In addition to overhead 400-W HPS lighting, LED fixtures designed for placement within the canopy were evaluated (GE current Arize® Integral). Two horizontal LED bars were positioned 30 cm (12 inches) apart with the upper bar adjusted within 30 cm of the top of the plants throughout the study. The integral lighting provided a spectrum with blue (peak 450 nm) and red (peak 660 nm) wavelengths in a 12:88 ratio. The perpendicular horizontal distance from the LED bars to the plant stems was 30 to 35 cm. The intensity (400-700 nm) measured at the plant stems horizontally from the LEDs averaged 195 ± 30 µmol m-2s-1. Overhead HPS provided ~130 ± 20 µmol m-2s-1, 100 cm below the fixtures. Seasonally short days and low sun angles limited natural light during the study. The first ripe tomatoes were harvested 62 d from transplanting (18 Dec). Interlighting resulted in higher plant yields with 6.3 ± 0.82 kg for Bigdena and 4.9 ± 0.67 kg for Beorange. In comparison, 4.1 ± 0.37 kg (Bigdena) or 3.4 ± 0.80 kg (Beorange) was recorded for plants receiving only HPS lighting. Five or six additional tomatoes were harvested with interlighting for Bigdena (25 ± 2.0 versus 19 ± 1.8) and Beorange (22 ± 2.5 versus 17 ± 1.9). Average tomato size increased from 217 ± 11.9 g to 250 ± 19.3 g (Bigdena) or from 199 ± 36.1 g to 227 ± 20.2 g (Beorange) with interlighting.
Speakers
MK

Meriam Karlsson

University of Alaska Fairbanks
Co-authors
EC

Eric Cook

University of Alaska Fairbanks
NA
Wednesday September 25, 2024 12:40pm - 12:50pm HST
Coral 1

12:50pm HST

CE - Effect of low root-zone temperature and UV radiation on growth and gene expression of secondary metabolite pathways in N
Wednesday September 25, 2024 12:50pm - 1:00pm HST
This study explored the effects of low root-zone temperature (LT) and UV radiation (UV) alone and combined on changes in growth, transcription, and gene expression related to secondary metabolite in Nicotidana benthamiana. The plants were grown in a controlled environment (25/20°C, 16/8 h [light/dark], 70% relative humidity, 1,000 µmol·mol−1 CO2 with photosynthetic photon flux densities of 100 and 200 µmol·m−2·s−1 for 10 and 18 d, respectively). Twenty-eight days after sowing, the seedlings were treated with LT (15°C), 0.3 W·m−2 of UV radiation, and a combined treatment with LT and UV (LT*UV) for 3 d. Results found that the treatment with UV alone decreased the quantum efficiency of photosystem II by approximately 1.5 times, and most growth characteristics decreased under the UV (approximately 1.5 times) and LT*UV treatments. Combined treatment with LT*UV significantly inhibited the growth characteristics and photosynthetic rates compared to those under the single LT and UV treatments. In particular, the transcriptome levels of phenylpropanoid and flavonoid biosynthesis were the most significantly affected by LT*UV. This suggests the potential of using LT treatment in hydroponic systems and UV radiation to control the synthesis of health-promoting compounds of secondary metabolites in greenhouses and controlled-environment agricultural facilities.
Speakers
avatar for KiHo Son

KiHo Son

Gyeonsang National University
Co-authors
EG

Eiji Goto

China university
NA
Wednesday September 25, 2024 12:50pm - 1:00pm HST
Coral 1

1:00pm HST

CE - Effects of Short-Wavelength UV-B, UV-A, and Blue Light on the Rose Flower Color Transition Phenotype
Wednesday September 25, 2024 1:00pm - 1:10pm HST
Light quality plays a crucial role in the growth and development of plants. In this study, we aimed to assess the effects of short-wavelength light on rose genotype '16401-N055’, which exhibits the flower color transitioning trait: the flowers change colors from yellow to pink in sunlight. Roses that exhibit this flower phenotype are termed transitioning-type roses. Specifically, we analyzed and compared the impact of six different light treatments [a sunlight control in open field and five spectral treatments created using light-emitting diodes (LEDs)] on various physiological and morphological characteristics. The five LED treatments included white light, blue light, UV-A white light, UV-B white light, and 80% blue 20% white light. Each treatment had two replications where one-year-old rose plants were the experimental unit. The total light intensity was maintained at 300-350 micromol m-2 s-1 for a photoperiod of 16 h light and 8 h darkness. The morphological traits measured included height, width, number of buds, number of flowers, and node density. The color scale parameters L* [luminance of the color ranging from 0 (black) to 100 (white)], a* [red (positive values) and green (negative values) color levels], and b* [yellow (positive values) and blue (negative values) color levels] were measured using a colorimeter. Additionally, the chlorophyll concentration index (CCI) was measured using a chlorophyll meter. Fully pigmented pink flowers were only observed in the UV-B white light treatment with an average L* value of 44.1 and a* value of 50.6. A slight pink hue was observed on the outer sections of petals in blue and blue white light treatments. The average L* and a* values of flowers in the blue treatment were 87.21 and 6.24, and in blue white treatment were 90.9 and 1.86, respectively. The flowers in the white UV-A treatment remained white with the highest average L* value of 92.4 and the lowest average a* value of -1.86. The CCI of plants under sunlight (23.5) was significantly lower than the plants treated with blue (34.4), and blue white (33.7) light. No significant differences in morphological traits were detected after two weeks. The plants will be monitored for longer periods and more data will be collected every two weeks for one month to document additional changes. The results obtained will provide additional information on morphological and floral changes in this genotype under different light treatments.
Speakers
NK

Navdeep Kaur

Texas A and M university
Co-authors
DB

David Byrne

Texas A and M University
NA
OR

Oscar Riera-Lizarazu

Texas A and M University
NA
SZ

Shuyang Zhen

Texas A and M University
NA
Wednesday September 25, 2024 1:00pm - 1:10pm HST
Coral 1

1:10pm HST

CE - Arduino Uno Can Reliably Log Substrate Moisture from a Bus of Digital Sensors and Control a Drip-Irrigation System
Wednesday September 25, 2024 1:10pm - 1:20pm HST
Inexpensive Arduino microcontrollers can be programmed to operate and log data from environmental sensors and operate other accessories such as irrigation solenoids. We describe our efforts to build a modified version of Arduino Uno systems previously developed at the University of Georgia, which operated analog moisture sensors and opened solenoid valves to drip emitters when moisture fell below user-defined thresholds. We attempted to 1) replace analog sensors with a bus of digital sensors that use the SDI-12 communication protocol, 2) include programming to parse digital output from two popular SDI-12 sensors (Decagon GS3 and Campbell Scientific 5TM), 3) use 12VDC solenoid valves that were less expensive and smaller (1/2”) than alternatives, and 4) overcome several challenges encountered in the construction and programming of the Arduino-based system. These included an approach to more easily manage the connection of numerous wires, the inclusion of a reversed diode at the solenoid terminals to prevent electrical interference from intermittently resetting the Arduino program, and the adoption of programming strategies to work around memory limitations that initially rendered our Arduino systems with digital sensors unreliable. We overcame these challenges to develop a robust, reliable, and easy-to-deploy Arduino-based environmental logger and automated drip-irrigation system that can operate numerous digital sensors. Sensor type and thresholds for volumetric water content are defined in a single location within the program, enabling the user to easily make minor adjustments to the system. We also included extensive line-by-line documentation of the source code. A list of the hardware used in this system is available. In 2023, eight of these systems operating 64 total sensors proved their reliability over a two-month experiment on the drought stress physiology of wetland shrubs. We conclude that this system is an effective solution for in-house sensor-automated irrigation with high customizability for end users.
Speakers
SE

Stephanie E. Burnett

University of Maine
NA
Co-authors
AJ

Adam J. Peterson

Unaffiliated
NA
BP

Bryan Peterson

University of Maine
JH

Jessica Hutchinson

University of Maine
RS

Rhuanito S. Ferrarezi

University of Georgia
NA
Wednesday September 25, 2024 1:10pm - 1:20pm HST
Coral 1

1:20pm HST

CE - The Effect of Climate Change on Plants: A Case Study with Wheat
Wednesday September 25, 2024 1:20pm - 1:30pm HST
Anthropogenic climate change (ACC) will have considerable effects on plants, though the extent to which these effects are positive or negative has been controversial. For this poster, a fully factorial experiment combining water and temperature over broad ranges (10-90% soil water content under 16°C-40°C) was carried out to address three shortcomings that might help explain the contrasting effects of climate change on plants: testing only one climate variable (e.g., only water or only temperature), failure to account for nonlinear responses to climatic variables, and studying a limited number of response variables. The experiment utilized wheat as the model species and found that most dependent variables related to grain production showed the highest performance under 23-33°C and low water (
Speakers
KW

Kira Webster

PhD Candidate, University of Hawaii at Manoa
Wednesday September 25, 2024 1:20pm - 1:30pm HST
Coral 1

1:59pm HST

Growth Chambers and Controlled Environments 3 (CE 3)
Wednesday September 25, 2024 1:59pm - 3:45pm HST
Effects of Light Sources and Fertilizers on Biomass Production of Nine Lettuce Cultivars in a Hydroponic Nutrient Film Technique System - Dario Rueda Kunz
Enhancing Lettuce Yield: Strategies for Fertility Management in Soilless Growth Systems. - Bryce Waugh
Effect of ZnO and SiO2 Nanoparticles on Growth and Physiology of Hydroponic Lettuce Under Salinity Stress - Chungkeun Lee
An Intermediate Calcium-mobilizing Biostimulant Concentration Controls Tipburn of Two Greenhouse Hydroponic Lettuce Cultivars Without Affecting Growth -Shem Msabila
Optimizing Sampling Methods for Sap Extraction to Enhance Plant Nutrient Analysis in CEA - Husnain Rauf
Effects of Potassium and Iron Supplements and Late Nitrogen Restriction on Aquaponic Taro (Colocasia esculenta) Corm Production - Andrew Bohringer
Advantages of a novel in situ pH measurement for soilless media - Hikari Skabelund

Speakers
DR

Dario Rueda Kunz

Texas Tech University
Wednesday September 25, 2024 1:59pm - 3:45pm HST
Coral 1

2:00pm HST

CE 3 - Effects of Light Sources and Fertilizers on Biomass Production of Nine Lettuce Cultivars in a Hydroponic Nutrient Film Technique System
Wednesday September 25, 2024 2:00pm - 2:15pm HST
This study investigated the impact of two light sources and fertilizers on the growth of nine lettuce cultivars in a hydroponic nutrient film technique system. The research was prompted by reduced plant growth and acidity issues observed in the nutrient solutions in which Lettuce (Lactuca sativa cv. Salanova) was growing in previous experiments. The hypothesis posited that adjusting the ammonium/nitrate ratio in the nitrogen fertilizer source could mitigate acidity drops in the nutrient solution and consequently enhance biomass production. This experiment was conducted at Texas Tech University's Horticulture Gardens and Greenhouse Complex from October 10 to November 22, 2023. Treatments included combinations of two light sources (WhiteLEDs and LumiGrow TopLight Node™) and two fertilizer brands (Oasis and MaxiGro) containing different ratios of ammonium:nitrate; Oasis with 21.25:78.75, and MaxiGro with 15:85. Both fertilizers were maintained at the same concentration of nitrogen throughout the experiment, although the rates were changed according to developmental stage. The nutrient solutions initially contained 100 ppm N fertilizer for three weeks, followed by a water change and an increase to 150 ppm N.The pH and EC levels were closely monitored throughout the experiment. Results revealed significant differences among cultivars for all measured variables, with Salvius demonstrating superior performance in most aspects. The light source had no significant impact on aerial growth variables, while the MaxiGro fertilizer brand significantly and positively influenced plant weight, height, and root weight. Although there were significant interactions between light source, cultivar, and fertilizer for above-ground variables, these were highly dependent upon fertlizer. In conclusion, the choice of fertilizer brand is crucial for optimal lettuce growth in hydroponic systems. This study highlights the importance of selecting appropriate fertilizer characteristics to avoid detrimental effects on biomass production. Further trials are recommended to validate these findings and address concerns for home and commercial growers in hydroponic lettuce production.
Speakers
DR

Dario Rueda Kunz

Texas Tech University
Co-authors
CS

Catherine Simpson

Texas Tech University
NA
Wednesday September 25, 2024 2:00pm - 2:15pm HST
Coral 1

2:15pm HST

CE 3 - Enhancing Lettuce Yield: Strategies for Fertility Management in Soilless Growth Systems.
Wednesday September 25, 2024 2:15pm - 2:30pm HST
The focus on sustainability and effective resource management is expanding along with the upward trend in greenhouse production. Precise application of fertilizers is becoming more and more important in a variety of agricultural systems. The physical and chemical characteristics of soilless growth media differ from those of soil, which causes differences in their ability to retain nutrients. As such, accurate rates of fertilizer are crucial. This study looked at 14 different fertilizer blends with varying percentages of potassium (0-200ppm), phosphorus (0-100ppm), and nitrogen (0-200ppm). Pots were filled with Berger BM6 media and then ‘Buttercrunch’ lettuce seeds were planted. With each treatment fertilizer rate, the plants were hand-watered once a week to maintain a 10% leaching fraction. The number of leaves, dry shoot weight, fresh root weight, dried root weight, and SPAD readings were among the end measurements. The study found that a mix of high rates of nitrogen, phosphorous, potassium fertilizer treatments increased fresh shoot weight. This emphasizes the need for additional study to determine the best fertilizer rates for various specialty crops grown in soilless greenhouse environment.
Speakers
BW

Bryce Waugh

Grad Student, Oklahoma State University
Co-authors
BD

Bruce Dunn

Oklahoma State University
Wednesday September 25, 2024 2:15pm - 2:30pm HST
Coral 1

2:30pm HST

CE 3 - Effect of ZnO and SiO2 Nanoparticles on Growth and Physiology of Hydroponic Lettuce Under Salinity Stress
Wednesday September 25, 2024 2:30pm - 2:45pm HST
Nanoparticles have unique physical and chemical properties, which can positively and negatively impact crop growth and tolerance to abiotic stresses. This study evaluated the potential of ZnO and SiO2 nanoparticles in alleviating salinity stress in hydroponically cultivated lettuce. Two-week-old lettuce seedlings (Lactuca sativa cv. Green Forest) were transplanted into a 5-L deep water culture system and grown for four weeks in a customized growth chamber set at 25°C with 230 µmol/m2/s PPFD. The nutrient solution was maintained at an electrical conductivity (EC) of 1.5 dS/m and pH 5.8, and replenished weekly. A factorial design was employed with four salinity stresses (non-saline, 50 mM NaCl, 33.3 mM CaCl2, 25 mM NaCl 16.6 mM CaCl2) and three nanoparticle treatments (no nanoparticle, 100 ppm ZnO, 100 ppm SiO2). Under non-saline conditions, both ZnO and SiO2 treatments showed no significant differences in shoot growth compared to the control plants. However, ZnO application reduced shoot biomass, leaf area, SPAD, chlorophyll fluorescence and net photosynthetic rate under CaCl2 and NaCl CaCl2 stress. SiO2-treated plants had higher SPAD than the control plants under CaCl2 stress but presented lower values under NaCl CaCl2 stress. Root growth also showed contrasting results based on the stress conditions. SiO2 application resulted in increased root dry weight, total root length and surface area under non-saline and CaCl2 stress, while they decreased under NaCl stress. Similarly, ZnO application enhanced root growth under non-saline conditions, but demonstrated negative effects under all salinity stress conditions. In conclusion, SiO2 nanoparticle application did not improve salinity tolerance in lettuce, except for root growth under CaCl2 stress, and ZnO nanoparticle treatments showed phytotoxicity in both shoots and roots under all salinity stress conditions.
Speakers
avatar for Chungkeun Lee

Chungkeun Lee

Texas A&M University
Co-authors
Wednesday September 25, 2024 2:30pm - 2:45pm HST
Coral 1

2:45pm HST

CE 3 - An Intermediate Calcium-mobilizing Biostimulant Concentration Controls Tipburn of Two Greenhouse Hydroponic Lettuce Cultivars Without Affecting Growth
Wednesday September 25, 2024 2:45pm - 3:00pm HST
Lettuce (Lactuca sativa) tipburn is a physiological disorder that leads to unappealing browning or necrosis of young leaf tips and stems, caused by localized calcium deficiency. It negatively impacts crop quality and yield, making proactive management essential for achieving optimal production. The objective was to evaluate the efficacy of a calcium-mobilizing chemical biostimulant, applied in the nutrient solution, on lettuce growth and tipburn. We conducted a greenhouse experiment on two lettuce cultivars (‘Dragoon’ and ‘Rex’) using a randomized complete block design. The seedlings were grown indoors under continuous white light from light-emitting diodes (LEDs) with a mean daily light integral (DLI) of 26 mol⋅m−2⋅d−1. We transferred 11-day-old seedlings to deep-water-culture hydroponic trays in a greenhouse. The two cultivars were subjected to three replications and five biostimulant concentrations (BC) of 0 (control), 0.125, 0.25, 0.5, and 1 mL⋅L−1 of the nutrient solution. Plants were grown under an 18-h photoperiod with a mean DLI of 16.6 ± 2.0 mol⋅m−2⋅d−1 from both sunlight and supplemental white LEDs, an air temperature of 24.6 ± 3.1 °C, and relative humidity of 33.2% ± 9.5%. Plant data were collected 14, 21, 28, and 35 days after transplant (DAT). There was no visible tipburn 14 DAT; however, plant diameter and shoot mass (fresh and dry) decreased with increasing BCs. We observed tipburn 21 DAT in both cultivars. The control had the highest severity on a 0–5 scale (0 = no tipburn; 5 = severe tipburn) for ‘Dragoon’ (0.6) and ‘Rex’ (1.3), whereas no tipburn occurred under higher BCs (i.e., 0.5 and 1 mL⋅L−1). Tipburn progressed 28 DAT, when increasing the BC from 0 to 1 mL⋅L−1 decreased the tipburn rating from 3.3 to 0 for ‘Dragoon’ and from 4.1 to 0 for ‘Rex’. Plant growth was stunted under the highest BC (i.e., 1 mL⋅L−1). At 35 DAT, both cultivars had severe tipburn under the control but had decreasing tipburn severity as the BC increased. Plant growth was unaffected under the control and low BCs (i.e., 0, 0.125, 0.25 mL⋅L−1). Under the highest BC, ‘Dragoon’ had the longest roots, but ‘Rex’ had the shortest. In contrast, plants experienced phytotoxicity (reduced biomass and chlorophyll concentration) under the highest BC, i.e., (1 mL⋅L−1) though no tipburn was recorded. In conclusion, the optimal calcium-mobilizing BC was 0.5 mL⋅L−1, which minimized tipburn of greenhouse hydroponic lettuce without affecting biomass accumulation or causing phytotoxicity during later development stages.
Speakers
QM

Qingwu Meng

University of Delaware
Co-authors
SM

Shem Msabila

University of Delaware
Wednesday September 25, 2024 2:45pm - 3:00pm HST
Coral 1

3:00pm HST

CE 3 - Optimizing Sampling Methods for Sap Extraction to Enhance Plant Nutrient Analysis in CEA
Wednesday September 25, 2024 3:00pm - 3:15pm HST
Plant sap analysis is a technique for monitoring plant nutrient status in real-time, enabling precise nutrient management to enhance growth and yield in controlled environment agriculture (CEA). Comprehensive sampling techniques are vital for accurate determination of nutrient concentrations, considering the variability of nutrients across different developmental phases of plants. However, questions remain regarding the selection of the appropriate plant tissues, including the number of leaves collected, sampling time, type and age of plant tissue, and frequency. Different crops need specific sampling procedures due to their unique leaf morphology, growth habits, and physiology. Many commercial laboratories only distinguish between new and old leaves. In this series of studies, we determined the most effective sampling method including the number of leaves, the type and age of tissue, as well as the timing and frequency of the collection. Optimal sampling techniques were identified for lettuce and tomato by conducting five different experiments across three cultivars. These experiments varied the number of leaves sampled (10, 20, 30 per sample with three replicates), types of tissue (leaves for lettuce with three replicates, and petioles and leaves for tomatoes with 20 each per sample), age of tissue (new vs. old with 20 leaves per sample and three replicates), time of collection (6, 8, 10 am with three replicates). For lettuce, two developmental stages (half and final harvest maturity), while for tomatoes, sampling frequency at four different growth stages was investigated (first fully expanded leaves, 1/3 and 2/3 of crop development, and final harvest). The results indicate that collecting 20 fully expanded leaves at 8 am, particularly at the final harvest, was considered the best sampling technique for nutrient analysis for both lettuce and tomatoes, providing the most effective sampling technique for optimizing nutrient management.
Speakers
HR

Husnain Rauf

University of Georgia
Co-authors
DJ

Daniel Jackson

University of Georgia
NA
JL

Jason Lessl

University of Georgia
NA
JS

Jessica Staha

Local bounti
NA
MP

Miguel Puebla

Pure flavor
NA
RS

Rhuanito S. Ferrarezi

University of Georgia
NA
TC

Timothy Coolong

University of Georgia
ZR

Zilfina Rubio

University of Georgia
Wednesday September 25, 2024 3:00pm - 3:15pm HST
Coral 1

3:15pm HST

CE 3 - Effects of Potassium and Iron Supplements and Late Nitrogen Restriction on Aquaponic Taro (Colocasia esculenta) Corm Production
Wednesday September 25, 2024 3:15pm - 3:30pm HST
The growing of taro in aquaponic systems has yielded corms significantly smaller than those grown terrestrially. Previous trials only partially supported the hypothesis that these low yields were due to excessive water and nitrogen levels late in vegetative development. A 2×2 (nitrogen restricted × supplemental fertilizer) factorial designed experiment was replicated 4 times in dual-tub systems. The 4 treatments tested were: 1) Fish effluent supplied throughout 10 months of plant development (T1); 2) Fish effluent restricted from the system at 6 months and fresh water supplied for the remaining 4 months of development (T2); 3) T1 plus supplemental potassium and iron fertilizer (T3); 4) Treatment 2 plus supplemental potassium and iron fertilizer (T4). The results indicate that the supplemental fertilizer was more important than effluent restriction late in development in enhancing corm growth, although effluent restriction did result in a higher maturity index of corms under supplemental fertilizer treatment. The corm yields were 140% higher in T3 (1.5 kg plant-1) than in T2 (0.63 kg plant-1). T4 had significantly more biomass partitioned into the corm (56% of total biomass) compared to T3 (44% of total biomass). The ratio of corm: total biomass is a key indicator of plant maturity and suggests restriction of high nitrogen effluent enhanced photosynthate translocation to the corm under supplemental fertilizer. Corm density was highest in T3 and lowest in T4, perhaps due to starch conversion to sugar in over-mature corms in T4. These results demonstrate the importance of supplementing potassium and iron fertilization, as well as restricting high nitrogen fish effluent late in taro corm development, to optimize taro yields and quality in aquaponic production systems.
Speakers
avatar for Andrew Bohringer

Andrew Bohringer

University of Hawai'i at Manoa
Co-authors
BK

Bradley Kai Fox

University of Hawai'i at Manoa
NA
EC

Eric Collier

University of Hawai'i at Manoa
NA
KW

Koon-Hui Wang

University of Hawai'i at Manoa
NA
RP

Robert Paull

University of Hawai'i at Mānoa
NA
TR

Theodore Radovich

University of Hawai’i at Mānoa
Wednesday September 25, 2024 3:15pm - 3:30pm HST
Coral 1

3:30pm HST

CE 3 - Advantages of a novel in situ pH measurement for soilless media
Wednesday September 25, 2024 3:30pm - 3:45pm HST
Rhizosphere pH determines nutrient bioavailability, but this pH is difficult to measure. Standard pH tests require adding water to growth media. This dilutes hydrogen ion activity and increases pH. We used a novel, in situ, pointed-tip electrode to estimate rhizosphere pH without dilution. Measurements from this electrode matched a research-grade pH meter in hydroponic nutrient solutions. We then compared measurements from this electrode to saturated paste and pour-through methods in peat moss, coconut coir, and pine bark. The pointed-tip electrode was unable to accurately measure pH in the highly-porous pine bark media. Adding deionized water to the other media at container capacity using the saturated paste method resulted in a pH that was 0.59 ± 0.30 units higher than the initial in situ measurement at the top of the container. This increase aligns with established solution chemistry principles. Measurements of pH using the pour-through method were 0.38 ± 0.24 pH units higher than in situ measurements at the bottom of the container. We conclude that in situ pH measurements are not subject to dilution and are thus more representative of the rhizosphere pH than the saturated paste and pour-through techniques.
Speakers Co-authors
BB

Bruce Bugbee

Utah State University
NA
NL

Noah Langenfeld

Utah State University
NA
RH

Royal Heins

Utah State University
NA
Wednesday September 25, 2024 3:30pm - 3:45pm HST
Coral 1

4:00pm HST

Interest Group Session: Using Applied Economics to Explore the Many Facets of Adding Value to the Horticultural Industry
Wednesday September 25, 2024 4:00pm - 6:00pm HST
The business environment in the horticultural industry is evolving and consumer preferences for value-added products are shaping market trends. With an increasing emphasis on health, sustainability, and convenience, consumers are seeking horticultural products that offer added value and benefits. This shift in consumer preferences presents both challenges and opportunities for horticultural businesses. Understanding these evolving consumer demands is crucial for horticulture businesses to develop innovative products and marketing strategies that resonate with their target audience.

The session aims to explore consumer behavior and preferences for value-added horticultural products, providing attendees with valuable insights to inform strategic decision-making and drive business growth in the competitive market. Presentations will explore the specific information consumers seek on wine packages and labels, and the influence of state marketing programs on consumer preferences for tomato transplants. Additionally, the session will explore the return on investment of social media marketing for US green industry firms, consumer preferences and willingness to pay for Florida-grown fresh blueberries, strategies for expanding marketing potential to appeal to all horticulture consumers, and the influence of demographics on the perception of flatheaded borer damage on ornamental plants. Through these diverse presentations, attendees will gain insights into key factors shaping consumer behavior, industry dynamics, and marketing strategies in the horticulture sector.

Coordinator(s)
  • Alicia L Rihn, University of Tennessee, Knoxville, United States
  • Melinda Knuth, North Carolina State University, Horticultural Science, Raleigh, North Carolina, United States
  • Chengyan Yue, University of Minnesota-Twin Cities (Minneapolis, MN), St. Paul, Minnesota, United States
Moderator(s)
  • Alicia L Rihn, University of Tennessee, Knoxville, United States
  • Melinda Knuth, North Carolina State University, Horticultural Science, Raleigh, North Carolina, United States
Speaker/Participant(s)
  • Alicia L Rihn, University of Tennessee, Knoxville, United States
    Do State Marketing Programs Impact Consumer Preferences for Tomato Transplants? (15 mins)
  • Ariana P Torres, Purdue University, United States
    The Return of Investment of Social Media Marketing: A Case of U.S. Green Industry Firms (15 mins)
  • Chengyan Yue, University of Minnesota-Twin Cities (Minneapolis, MN), St. Paul, Minnesota, United States
    What Information Consumers Are Looking for On Wine Packages and Labels? (15 mins)
  • Hayk Khachatryan, University of Florida, United States
    Analyzing Consumer Preferences and Willingness to Pay for Florida-Grown Fresh Blueberries (15 mins)
  • Melinda Knuth, North Carolina State University, Horticultural Science, Raleigh, North Carolina, United States
    Expanding Marketing Potential to Appeal to All Horticulture Consumers (15 mins)
  • Ben Campbell, University of Georgia, United States
    Demographic Influences on the Perception of Flatheaded Borer Damage on Ornamental Crops (15 mins)
    Summary: Mounata Dahal, Tate Norman, Ben Campbell, and Alicia Rihn
Moderator
MK

Melinda Knuth

North Carolina State University
Speakers
BC

Ben Campbell

University of Georgia
CY

Chengyan Yue

University of Minnesota-Twin Cities (Minneapolis, MN)
Wednesday September 25, 2024 4:00pm - 6:00pm HST
Coral 1

6:00pm HST

Graduate Student Poster Competition
Wednesday September 25, 2024 6:00pm - 7:30pm HST
Competition participants must bring your poster pdf on a thumb drive or the physical poster to your assigned room. You will be lined up to present to the judges in order of arrival. You will enter the room one at a time.

Students will be given 5 minutes to make a presentation to the judges, followed by a 2 minute period of questions and answers.

This competition is open to graduate students that have a poster presentation scheduled during the ASHS conference AND have also signed up to participate in this competition (Note: This is separate of the assigned time to present your abstract during the conference program).

Please note that if you do not also present your poster during the regularly scheduled Poster session, you will be disqualified from the Poster Competition.

Speakers
avatar for Kondwani Kamsikiri

Kondwani Kamsikiri

University of Florida
MP

Monika Peddapuli

UNIVERSITY OF FLORIDA
NU

Noor Ul Basar

University of Florida
EW

Emily Worbington

University of Florida-IFAS CREC
GB

Giancarlo Buzzi

University of Florida
MT

MADELEINE TENNY

Florida Gulf Coast University
avatar for Lucas Sales

Lucas Sales

Research Assistant, University of Georgia
Agronomy Engineer graduated from the Federal University of Paraíba. With experience in the management and cultivation of Ornamental Plants, through a year of experience working in Greenhouses in the state of New Hampshire, USA. Experienced in the management and cultivation of vegetables... Read More →
JB

Joseph Bazzle

Clemson University

Wednesday September 25, 2024 6:00pm - 7:30pm HST
Coral 1
 


Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
Filtered by Date - 
  • Career and Professional Development
  • Colloquium
  • Competitions
  • General - Registration/Speaker Center /etc.
  • Hort Theater & Collaboration Center
  • Interactive Workshop
  • Interest Group Session
  • Keynotes and Featured Sessions
  • Meals and Tours
  • Meetings - Committee/Division/interest Group
  • Oral presentation (Individual talk)
  • Oral Sessions
  • Poster presentation (individual talk)
  • Poster Session
  • Reception
  • Ticketed Events