Loading…
Tuesday September 24, 2024 3:30pm - 3:45pm HST
Bacterial wilt, caused by Ralstonia solanacearum (Rs), is an economically devastating plant pathogen that causes rapid death and has been widely distributed worldwide. Rs is a soil-borne bacterium that plugs plant xylem vessels, causing wilt and ultimately death in tomatoes (Solanum lycopersicum L.) and many other economically important crops. The most cost-effective and efficient means of managing Rs is planting resistant cultivars. However, acceptable Rs resistance in these genotypes is tightly linked to small fruit size, preventing development of BW-resistant large fruited tomato cultivars. Previous research has shown that a highly resistant cultivar's candidate resistance gene (Sl-BWR) is linked to qualitative resistance of Rs. Our preliminary data indicates that overexpression of the resistant allele in a susceptible cultivar background confers resistance comparable to the wild-type resistant allele. There is ongoing work to generate susceptible allele overexpression lines and knockout lines from the susceptible and resistant cultivars. We hypothesize the resistant allele knockouts will be susceptible to Rs, indicating that the candidate gene is the primary resistance factor. The gene could be functionally characterized to elucidate the Rs resistance mechanism in tomatoes to be deployed in a breeding program to develop resistant cultivars against bacterial wilt.
Speakers
JD

James Duduit

North Carolina State University
Co-authors
TA

Tika Adhikari

North Carolina State University
NA
WL

Wusheng Liu

North Carolina State University
Tuesday September 24, 2024 3:30pm - 3:45pm HST
South Pacific 3

Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link