Loading…
Wednesday September 25, 2024 9:00am - 9:15am HST
The US strawberry industry needs healthy, high-quality transplants every year for fruit production. Following the challenges in open-field nurseries, research is focused on controlled-environment agriculture as a potential alternative to not only increase strawberry tip yield but also to produce healthier, virus-free transplants (rooted tips). Growing stock plants indoors where the runners grow vertically downward increases the yield and quality of tips, however, there is a lack of information on the general architecture of plants especially the spatial distribution of daughter plants and also the leaf area index (LAI) distribution of the daughter plants’ canopy in the growing space. This information is vital for future system design as it determines the distance between the shelves and the potential need for intracanopy lighting. Furthermore, besides temperature, photoperiod strongly affects the trade-off between runner Vs. flower production. Yet, there is also a lack of information on how photoperiod will change the yield, quality, and architecture of stock plants in CEA, specifically on long-day cultivars. Here, we examined 12, 16, and 20 h photoperiods with the same DLI of 26 mol m-2 d-1 on ‘Monterey’ as a long-day cultivar with two replications in time. The chamber environment was maintained at a high temperature of 26 °C, ambient CO2, and 65% relative humidity. The plant density was 9 plant m-2. Following 64 days of growth, parameters related to yield, architecture, and quality were recorded. Results showed that even under relatively high temperatures, with shortening the photoperiod, a linear increase in the number of tips was observed, increasing from ~36.3 to ~44.3 (18%) with the same DLI. Regardless of the photoperiod, the highest proportion of tips (30.8%) were harvested on the runners from 40 – 80 cm distance from the mother plant, though the highest LAI (53.2%) was recorded on the tips from 0 – 40 cm, causing a sudden drop (92.8%) in the light intensity after 40 cm where most of the tips are growing. This information shows the need for intracanopy lighting under 40 cm depth from the mother plants. Around 98% of the tips were harvested from 0 – 160 cm, showing the needed space for the growth of runners (i.e., the distance between the shelves). Several morphology and photosynthetic parameters were also recorded. The information from this study will be used as a base for a follow-up experiment comparing top versus intracanopy lighting.
Speakers
MM

Moein Moosavi

NC State University
https://www.linkedin.com/in/moein-moosavi-nezhad/
Co-authors
RH

Ricardo Hernandez

NC State University
NA
Wednesday September 25, 2024 9:00am - 9:15am HST
Coral 2

Attendees (2)


Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link