Loading…
Wednesday September 25, 2024 11:30am - 11:45am HST
Mulching is a common task in the landscape industry, with materials selected to provide environmental benefits (i.e. moderating soil conditions, limiting weed growth) and aesthetic value, with colored mulches often employed to add an artistic element to landscapes. Questions arise over possible effects that mulch color may have on soil temperatures, especially when using darker materials. This research investigated the effects of a commercially available shredded mulch (dyed black, brown, or red) on soil temperature and light transmission in model research plots. A plot at the Hammond Research Station was cleared, graded, and prepared with a typical bed mix comprised of pine bark and sand. A total of 21 sub-plots were prepared, where each sub-plot had a remote temperature sensor buried at the base of the bed mix (8 cm below surface), and a temperature and light sensor placed over top of the bed mix. Mulch was applied to depths of 5 cm or 10 cm directly over the top of the temperature and light sensors, with n=3 for our control (no mulch over the bed mix), red mulch (n=3 for depth of 5 cm and n=3 for depth of 10 cm), brown mulch (n=3 for depth of 5 cm and n=3 for depth of 10 cm), and black mulch (n=3 for depth of 5 cm and n=3 for depth of 10 cm). Soil temperature conditions (both within the mulch itself, and at the base of the bed mix) as well as light transmission through the mulch layer was recorded every 30 minutes throughout a spring and summer season at the Hammond Research Station. Blank (unmulched) plots naturally experienced the most light transmission and temperature extremes. Regardless of mulch color or depth, light transmission was substantially reduced (and often eliminated) equivalently between mulch treatments. Temperature was measured both within the surface mulch layer, and 8 cm below into the subsurface bedding mix. While subsurface temperatures were effectively equivalent between all mulched plots, surface temperatures exhibited substantial differences between mulch colors and depths. Thinner mulch layers experienced more extreme surface temperature fluctuations, with mulch color influencing peak temperatures. The results of this work suggest that different mulch colors and depths have a greater influence on temperature at the immediate surface, but far more muted differences in subsurface temperatures.
Speakers
DA

Damon Abdi

Louisiana State University Agricultural Center
Co-authors
AH

Ashley Hickman

Louisiana State University Agricultural Center Hammond Research Station
NA
JF

Jeb Fields

LSU AgCenter Hammond Research Station
Wednesday September 25, 2024 11:30am - 11:45am HST
Coral 1

Attendees (4)


Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link