Loading…
Tuesday September 24, 2024 4:45pm - 5:00pm HST
Spinach (Spinacia oleracea) is a popular leafy vegetable crop in the US, particularly for the fresh market baby leaf spinach. However, downy mildew (DM), caused by the obligate oomycete Peronospora effusa, poses a significant challenge to spinach cultivation in California and Arizona as it reduces the quality and yield of spinach. This is particularly concerning given that the two production areas contribute over 85% of the total fresh market spinach in the US. The emergence of new races of P. effusa, with nineteen races reported and fourteen identified in the last two decades, presents a persistent threat as new races and variant isolates can overcome the existing resistance in commercially deployed cultivars. Furthermore, over 50% of the spinach market is organic production, so utilizing host genetic resistance is a crucial disease management strategy. To combat this challenge, we conducted screenings of germplasm, cultivars, and multi-parent progeny populations in greenhouse conditions to identify resistant sources and genomic regions associated with resistance to multiple races of P. effusa (specifically race 5, 13, and 16). The spinach population panel was sequenced utilizing genotyping by sequencing (GBS), low coverage resequencing, and 10x coverage whole genome resequencing (WGR) to generate single nucleotide polymorphisms (SNP) markers. Subsequently, genetic analysis was performed using disease phenotype response data obtained and SNP markers for the identification of resistance-associated SNP markers and candidate resistance genes. The molecular analysis and mapping efforts have yielded valuable insights into the basis of downy mildew resistance in spinach, providing essential molecular tools to facilitate breeding for disease resistance. This work will summarize the updated findings from these efforts. This work will enhance our understanding of resistance mechanisms, which will contribute to developing more effective breeding strategies, increasing selection gains and breeding efficiency in spinach.
Speakers
GB

Gehendra Bhattarai

University of Arkansas
Co-authors
avatar for Ainong Shi

Ainong Shi

Associate Professor, University of Arkasnas
Dr. Ainong Shi is a faculty member in the Department of Horticulture at the University of Arkansas. His research laboratory specializes in plant breeding and genetics, particularly focusing on vegetable crops such as arugula, cowpea, and spinach for cultivar and germplasm development... Read More →
BM

Beiquan Mou

USDA-ARS, Crop Improvement and Protection Research Unit, Salinas, CA, 93905, USA
NA
JC

James C Correll

University of Arkansas
NA
Tuesday September 24, 2024 4:45pm - 5:00pm HST
South Pacific 3

Attendees (1)


Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link