Loading…
Thursday September 26, 2024 9:00am - 9:15am HST
Hybrids originating from different species within the Muenchhusia section of Hibiscus are well-received in commercial markets for their vibrant and abundant blossoms. However, many commercially available varieties prove overly robust for smaller garden spaces, often yielding a limited number of blooming flowers. The cultivation of stable, heritable mutants displaying a dwarf stature and improved branching architecture holds significant promise for enhancing the commercial production of resilient Hibiscus. The objective of this project was to induce point mutations in genes linked to the biosynthesis or signaling of plant growth-related hormones, using ethyl methanesulfonate (EMS). Successful induction of multiple mutations associated with dwarf, compact phenotypes was achieved. Hybridizations were carried out between M2 plants exhibiting a dwarf phenotype and hybrids generated through traditional breeding that lacked the dwarf mutation in their genetic background. This aimed to produce a diverse array of dwarf plant selections. The inheritance patterns of the dwarf genes were elucidated by analyzing the segregation ratios of the dwarf phenotype in the F1 and F2 generations of these hybrids. In comparison to non-dwarf progeny, dwarf progeny exhibited significantly shorter internode lengths and a greater number of primary branches.
Speakers
CA

Conner Austin

University of Florida
Thursday September 26, 2024 9:00am - 9:15am HST
South Pacific 4

Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link