Loading…
Thursday September 26, 2024 10:30am - 10:45am HST
Field trials were conducted to investigate the feasibility of applying commonly used soil amendments to reduce the accumulation of arsenic (As), cadmium (Cd), and lead (Pb) in sweetpotato storage roots. The cultivars Bayou Belle and Beauregard were grown on an experimental site with natural levels of As, Cd, and Pb. The following soil amendments were used: agricultural lime (AGL) (1 t·ac−1), gypsum (GYP) (1 t·ac−1), biochar (BIO) (1 t·ac−1), and silicon provided as wollastonite (WOL) (2.5 t·ac−1). Compared to the unamended plots, WOL and GYP were associated with elevated soil pH and sulfur levels while reducing Mn and Fe availability. There were no differences in storage root yield grades for both cultivars. The soil amendments were associated with reducing As and Cd extractability by 12 to 31% and 2 to 5%, respectively. A notable finding was the increase in Cd and Pb accumulation in the cultivar Beauregard amended with WOL. We hypothesize that the elevated pH was associated with reducing available binding sites and surface complexes such as with Mn and Fe, leading to the increased bioavailability of Cd and Pb. These preliminary findings support the hypothesis that AGL is a viable soil amendment under mixed toxic element conditions, reducing Pb accumulation without increasing the uptake of other toxic elements. The data also support the need for a systems-based approach for the long-term management of toxic elements in sweetpotato, where soil amendment application is integrated with the use of cultivars associated with low accumulation of specific toxic elements.
Speakers
MA

Mae Ann Bravo

Louisiana State University
Co-authors
AV

Arthur Villordon

Louisiana State University
BT

Brenda Tubana

Louisiana State University
NA
CG

Cole Gregorie

Louisiana State University
NA
DL

Don La Bonte

Louisiana State Univ
NA
LA

Lisa Arce

Louisiana State University
MB

Marissa Barbosa

Lousiana State University
MA

Mary Ann Munda

Louisiana State University
Thursday September 26, 2024 10:30am - 10:45am HST
Coral 1

Attendees (3)


Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link