Loading…
Friday September 27, 2024 11:30am - 11:45am HST
This study explored the efficacy of biochar, derived from paper mill waste, in enhancing soil properties, plant growth and yield in sweet corn when used with organic (poultry litter) or inorganic fertilizers. Conducted in spring 2023, the field trial assessed biochar application rates (0, 10, 15, and 20 tons/acre) combined with fertilizers supplying 225 lbs N/acre in a randomized complete block design with four replications. Our results indicate that biochar's effectiveness is limited when used alone but significantly affects soil nutrients and crop outcomes in combination with fertilizers. Inorganic fertilizers, compared to organic, were more effective in improving yield metrics such as ear number, weight, and width. In addition, our findings suggest that the interaction of biochar and fertilizer type significantly influences soil nutrient levels. Biochar and inorganic fertilizer generally exhibited a strong negative correlation with nutrients like nitrogen (N), indicating a notable decrease in N soil content with lower biochar application rates. Suggesting that biochar can mitigate nutrient depletion when combined with inorganic fertilizers. Conversely, when biochar is applied alongside organic fertilizers, the outcomes vary across different nutrients. For magnesium (Mg) and calcium (Ca), positive correlations emerge at higher application rates, hinting at biochar's role in enhancing the bioavailability of these nutrients in organically fertilized soils. Regarding plant growth and development, the analysis revealed that the interaction between fertilizer type with biochar and biochar rate alone had no significant effect on most measured growth parameters. However, the fertilizer type used did significantly affect some growth parameters. Specifically, plants grown with organic fertilizer had significantly higher fresh weight of roots and total dry plant weight than those grown with inorganic fertilizer. It was found that the highest rate of biochar (20 tons/A) raised soil pH significantly at 90 days, reaching 6.65 pH in the inorganic treatment and 7.0 pH in the organic treatment. The pH was lowest in the treatments without biochar (0 tons/acre) at 90 days after application (5.1 pH inorganic and 6.0 pH organic treatments respectively). Furthermore, biochar application was linked to increased soil microbial activity, as evidenced by CO2 burst measurements. These significantly rose with higher biochar rates under both fertilizer regimes, albeit without a significant interaction effect between biochar and fertilizer type on CO2 burst. These findings suggest that integrating biochar with fertilization strategies can enhance soil health and sweet corn production, offering a sustainable approach to managing soil nutrients and improving crop yield.
Speakers
ES

Emilio Suarez Romero

University of Georgia
Co-authors
HY

Henry Y Sintim

University of Georgia
NA
JC

Juan Carlos Diaz Perez

University of Georgia
KC

Kate Cassity Duffey

University of Georgia
NA
TM

Ted McAvoy

University of Georgia
NA
Friday September 27, 2024 11:30am - 11:45am HST
South Pacific 2

Attendees (2)


Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link