Loading…
Tuesday September 24, 2024 4:45pm - 5:00pm HST
Biofilms clog irrigation systems, thus affecting water use efficiency, crop yields, and production costs. Microbial attachment and subsequent biofilm accumulation is influenced by the irrigation water quality and materials used in the design of water distribution systems. Therefore, the goal of this research was to evaluate if the pipe material and the load of organic matter in nutrient solutions affected biofilm accumulation, microbial community composition, and emitter performance. Nutrient solutions had 0, 30, 60, and 120 mg·L-1 peat particles under 150 µm in diameter and flowed through pipe loops made of polyvinyl chloride (PVC) and polyethylene (PE). The emitters were pressure compensated drippers with anti-drain mechanism and a nominal discharge of 2 L·h-1. Heterotrophic plate counts and biofilm dry mass were used as indicators of biofilm accumulation. DNA was extracted from the biofilm then sequenced for bacterial community composition analysis. The surface of new and post-biofilm pipes was characterized by measuring hydrophobicity and roughness to evaluate the effects of biofilm on the pipe’s surface. None of the emitters clogged, but there was an increase in discharge with 60 and 120 mg·L-1 peat. This observation suggests that the particles and biofilm accumulation affected the operation of the emitters’ anti-drain mechanism. The pipe material had more influence on the accumulation and bacterial community composition of biofilms than the organic load of the nutrient solution. Overall, biofilm accumulated more on PVC pipes than on PE pipes. The hydrophobicity of PVC pipes decreased, and roughness of PVC and PE pipes increased after biofilm colonization. These results suggest that the characteristics of the pipes can influence and be influenced by biofilms and therefore affect the risk of clogging. Our results also suggest that biofilms establish better on materials that biodegrade easy and that biofilm changes the roughness of PVC pipes which may further affect pipe longevity.
Speakers
JC

Juan Cabrera Garcia

University of Missouri
Co-authors
RR

Rosa Raudales

University of Connecticut
Tuesday September 24, 2024 4:45pm - 5:00pm HST
Nautilus 1

Attendees (1)


Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link