Loading…
Tuesday September 24, 2024 5:15pm - 5:30pm HST
Nurseries and greenhouses in California face challenges of limited water supply and increased scrutiny from water quality regulators. Improving irrigation efficiency thus minimizing irrigation runoff are the main strategies to save water and comply with regulations. Evapotranspiration-based (ET) methods that make use of weather station data has the potential to substantially improve efficiency. In California, a statewide network maintained by DWR CIMIS project is widely used. However, crop-specific coefficients to calculate irrigation needs from weather data are not widely available in the nursery industry, particularly for large (15-gal and up) containers. In this project we measured water use and developed crop coefficient for 15-gal trees, one low water user (Olive, Olea europaea) and two high water users (Sycamore, Platanus acerifolia and Ficus microcarpa) with different canopy architectures. Container weight was measured with load cells (Omega LC103B, a weighing device similar to a scale), with values logged every minute by a Campbell Scientific data logger (CR1000X). Daily water use was calculated as the difference in weight from after each irrigation to before the following one. Local CIMIS reference ET was used to calculate crop coefficients. Tree water use yielded crop coefficients averaged 1.19 for Ficus; 0.57 for Olive and 1.21 in Sycamore during fall 2023 before defoliation started to occur for Sycamore in mid-October. Olive and Ficus defoliated through winter reaching the lowest crop coefficient in March 2024 when the coefficient was 0.42 for Ficus; 0.22 in Olive and 0.12 in Sycamore. Crop coefficients were substantially lower than those presented by Burger et al., 1987. for similar woody ornamentals grown in 1-gal containers. The difference is that Burger’s crop coefficients were calculated using the container surface area, while we used the (larger) block area divided by the number of containers. While less meaningful from a plant physiology point of view, a block-based crop coefficient is more useful for irrigation management and more similar to the crop coefficient calculation in field crops, grape vines and fruit trees. Results from our method can be converted to Burger et al. method by dividing by interception efficiency (i.e. cumulative container surface area divided by irrigation block area).
Speakers
avatar for Gerry Spinelli

Gerry Spinelli

University of California Cooperative Extension
Irrigation management in nurseries and greenhouses
Co-authors
CS

Chris Shogren

University of California Cooperative Extension Los Angeles
Tuesday September 24, 2024 5:15pm - 5:30pm HST
Nautilus 1

Attendees (3)


Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link