Loading…
Tuesday September 24, 2024 1:40pm - 1:50pm HST
Indoor agriculture production allows producers to control all of the environmental parameters given a system with enough sophistication. However, the expense of comprehensive systems is prohibitive from an economic standpoint, in most cases. Identifying the most important parts of the plant environmental experience to control is a critical part of building efficient and economical indoor farms. In this study with temperature, nutrition, lighting and other aspects of the farm being controlled, airflow was manipulated. Micro dwarf cherry tomato varieties (Solanum lycopersicum ‘Tiny Tim’ and ‘Pinocchio Orange’) were grown in an NFT style hydroponic systems for 90 days. All plants were grown in a greenhouse with natural and supplemental lighting. Control plants received airflow native to the greenhouse environment, mixing fans, ridge line vents and pad fan based HVAC control. The treated plants experienced a “high air flow” condition. The results indicate a clear improvement in the fruit weight, number of fruit per plant, and fruit diameter for plants which experienced increased airflow. These results, while preliminary, demonstrate the clear advantage of additional airflow targets for indoor plant production and provide the basis for an important indoor production lever to improve yields in micro dwarf cherry tomatoes.
Speakers
MA

Matthew Arrington

Brigham Young University
Dr. Matt Arrington is an assistant professor of applied plant science at Brigham Young University. Matt graduated with his PhD in horticulture from Washington State University and Masters degree from Oregon State University. His areas of research focus include crop efficiency in controlled... Read More →
Co-authors
NG

Nathan Grooms

Brigham Young University
NA
Tuesday September 24, 2024 1:40pm - 1:50pm HST
South Pacific 3

Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link