Loading…
Wednesday September 25, 2024 1:00pm - 1:10pm HST
This study explored the effects of low root-zone temperature (LT) and UV radiation (UV) alone and combined on changes in growth, transcription, and gene expression related to secondary metabolite in Nicotidana benthamiana. The plants were grown in a controlled environment (25/20°C, 16/8 h [light/dark], 70% relative humidity, 1,000 µmol·mol−1 CO2 with photosynthetic photon flux densities of 100 and 200 µmol·m−2·s−1 for 10 and 18 d, respectively). Twenty-eight days after sowing, the seedlings were treated with LT (15°C), 0.3 W·m−2 of UV radiation, and a combined treatment with LT and UV (LT*UV) for 3 d. Results found that the treatment with UV alone decreased the quantum efficiency of photosystem II by approximately 1.5 times, and most growth characteristics decreased under the UV (approximately 1.5 times) and LT*UV treatments. Combined treatment with LT*UV significantly inhibited the growth characteristics and photosynthetic rates compared to those under the single LT and UV treatments. In particular, the transcriptome levels of phenylpropanoid and flavonoid biosynthesis were the most significantly affected by LT*UV. This suggests the potential of using LT treatment in hydroponic systems and UV radiation to control the synthesis of health-promoting compounds of secondary metabolites in greenhouses and controlled-environment agricultural facilities.
Speakers
KS

KiHo Son

Gyeonsang National University
Co-authors
EG

Eiji Goto

China university
NA
Wednesday September 25, 2024 1:00pm - 1:10pm HST
Coral 1

Attendees (2)


Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link