Loading…
Wednesday September 25, 2024 1:20pm - 1:30pm HST
Inexpensive Arduino microcontrollers can be programmed to operate and log data from environmental sensors and operate other accessories such as irrigation solenoids. We describe our efforts to build a modified version of Arduino Uno systems previously developed at the University of Georgia, which operated analog moisture sensors and opened solenoid valves to drip emitters when moisture fell below user-defined thresholds. We attempted to 1) replace analog sensors with a bus of digital sensors that use the SDI-12 communication protocol, 2) include programming to parse digital output from two popular SDI-12 sensors (Decagon GS3 and Campbell Scientific 5TM), 3) use 12VDC solenoid valves that were less expensive and smaller (1/2”) than alternatives, and 4) overcome several challenges encountered in the construction and programming of the Arduino-based system. These included an approach to more easily manage the connection of numerous wires, the inclusion of a reversed diode at the solenoid terminals to prevent electrical interference from intermittently resetting the Arduino program, and the adoption of programming strategies to work around memory limitations that initially rendered our Arduino systems with digital sensors unreliable. We overcame these challenges to develop a robust, reliable, and easy-to-deploy Arduino-based environmental logger and automated drip-irrigation system that can operate numerous digital sensors. Sensor type and thresholds for volumetric water content are defined in a single location within the program, enabling the user to easily make minor adjustments to the system. We also included extensive line-by-line documentation of the source code. A list of the hardware used in this system is available. In 2023, eight of these systems operating 64 total sensors proved their reliability over a two-month experiment on the drought stress physiology of wetland shrubs. We conclude that this system is an effective solution for in-house sensor-automated irrigation with high customizability for end users.
Speakers
SE

Stephanie E. Burnett

University of Maine
NA
Co-authors
AJ

Adam J. Peterson

Unaffiliated
NA
BP

Bryan Peterson

University of Maine
JH

Jessica Hutchinson

University of Maine
RS

Rhuanito S. Ferrarezi

University of Georgia
NA
Wednesday September 25, 2024 1:20pm - 1:30pm HST
Coral 1

Attendees (3)


Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link