Loading…
Friday September 27, 2024 1:45pm - 2:00pm HST
Dissolved oxygen (DO) level in hydroponic solution is an important factor affecting plant root development and water and nutrient uptake. However, precisely controlling the DO level in hydroponics has always been difficult due to the direct linkage of solution temperature and oxygen concentrations, especially under different aeration methods. Besides potentially controlling solution temperature, using liquid oxygen fertilization such as hydrogen peroxide (H2O2) has been shown to burst increase DO concentration in the solution, and ozonation, which is a sanitization treatment, has the potential to adjust DO level by supplying oxygen in nutrient solution. Our objective was to evaluate the effects of different DO levels and oxygenation strategies in a hydroponic system for the optimal growth of kale (Brassica oleracea) and arugula (Eruca vesicaria). In this study, we used ozone generators and hydrogen peroxide (H2O2) as a DO enrichment method in addition to the air pump-based aeration system to test the effects of different DO levels – low, medium, high as 6, 9, 12 mg/L, respectively – on kale ‘KX-1’ and ‘Red Russian’, and arugula ‘Astro’ and ‘Esmee’ grown in a deep water culture system. Treatment without using ozone generators or H2O2 was assigned as control. The study was arranged as a completely randomized design with three replications. DO and temperature probes were connected to a datalogger to trigger ozone generators and H2O2 injection using a relay once the DO levels were below the set thresholds. Weekly measurements were taken for plant height, leaf and anthocyanin chlorophyll content. The final harvest additionally measured leaf area, shoot and root biomass the leaf soluble solids content, titratable acidity, and leaf nutrient concentration. Plants grown under a high DO level had a higher root-to-shoot ratio, but the overall higher plant yield was achieved under the medium DO level. This system demonstrated that precise DO level control could be achieved using a sensor-based system.
Speakers
KQ

Kuan Qin

University of Georgia
Friday September 27, 2024 1:45pm - 2:00pm HST
Nautilus 1

Attendees (1)


Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link