Loading…
Friday September 27, 2024 2:30pm - 2:45pm HST
Phytochromes (PHYs) play a dual role in sensing light spectral quality and temperature. PHYs can interconvert between their active and inactive forms upon absorption of red and far-red light (Photoconversion). In addition, the active form can be converted to the inactive form in a temperature-dependent manner (Thermal Reversion). Our recent research found that while far-red (FR; 700-800 nm) light promoted leaf expansion and biomass of lettuce (Lactuca sativa) ‘Rex’ under cooler temperatures (20-24 °C), it reduced plant biomass and leaf area under warm temperature (28 °C). Considering that PHY activity would be driven mainly by photoconversion, not thermal reversion, under higher light intensity (HL), we hypothesized that the magnitude of the interaction between FR light and temperature on plant growth and morphology decreases with increasing light intensity. Lettuce ‘Rex’ was grown under three temperature regimes (20, 24, and 28 oC) x two spectral treatments [0 and 20% of FR light in total photon flux density (TPFD; 400-800 nm)] x two light intensities [150 (lower light intensity; LL) and 300 (HL) μmol·m-2·s- 1 of TPFD]. Our results showed that the effects of FR light on leaf expansion and stem elongation depended on temperature under LL. Specifically, FR light significantly promotes leaf expansion under cooler temperatures (20 oC), while decreasing total leaf area under warmer temperatures (24 and 28 oC). However, the magnitude of the interactive effects between FR light and temperature on plant morphology decreased under HL, leading to a consistent increase in total leaf area by FR light under HL. Similarly, FR light promoted plant growth under HL regardless of temperature, while reducing plant biomass under warm temperature under LL. Crop yield was primarily dependent on photon capture rather than photosynthetic efficiency per unit leaf area. FR light generally decreased the production of secondary metabolites (e.g., phenolics and flavonoids), while warm temperature and HL treatments increased the production of secondary metabolites. We concluded that the interactive effects between FR light and temperature on plant growth and morphology are further dependent on light intensity. The combination of FR light, warm temperature, and HL could maximize crop yield without reducing nutritional quality in terms of antioxidant capacity.
Speakers Co-authors
GN

Genhua Niu

Texas A
SZ

Shuyang Zhen

Texas A
NA
Friday September 27, 2024 2:30pm - 2:45pm HST
Nautilus 1

Attendees (1)


Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link