Loading…
Tuesday September 24, 2024 4:15pm - 4:30pm HST
Increasing drought conditions and variable water availability under climate change impact plant productivity, ecosystem function and the global carbon cycle, with many species-level responses remaining unknown. Variation in response and ability to acclimate to decreased water availability differs among plant species and across biomes. This project utilized a preexisting water deficit trial of horticultural taxa across sites in the Western U.S. to assess the interactions between acclimation to climate and water availability across a growing season. Four focal taxa, Physocarpus ‘Diabolo’, P. ‘Little Devil’, Cercis canadensis and C. occidentalis shared across three locations in Washington, Oregon and Utah were measured for physiological and hydraulic traits on the leaf and stem scale in response to irrigation treatment. The cultivars of Physocarpus are popular landscape shrubs known for their distinctive purple foliage yet understudied physiologically. C. occidentalis and C. canadensis have distinct native ranges, with the former originating west of the Rocky Mountains while the latter is east coast in origin, thus their performance was compared across these western U.S. sites. Full gas exchange, specific leaf area, 13C isotope discrimination, hydraulic conductivity, stomatal conductance, ΦPSII, were analyzed and water use efficiency was calculated each taxon at each location. Impacts of site, treatment, taxa and change across the growing season were analyzed on this suite of traits. Results show distinctions in water use strategy by climatic location (p: 1e-05) and between closely related species and cultivars. Additionally, physiological measurements indicate measurable physiological plasticity across the growing season. These findings indicate the importance of setting on the ability of different plant cultivars to acclimate to water stress, taxa-level differences among horticulturally important species, and overall knowledge of plant drought response, knowledge gaps that are crucial to address in the face of anthropogenic climate change.
Speakers
AK

Amelia Keyser Gibson

University of Washington
Co-authors
DH

Darren Haver

South Coast Research and Extension Center
NA
JS

Jared Sisneroz

University of California, Davis
LN

Lloyd Nackley

Oregon State University
Lloyd Nackley is a plant ecologist who applies a systems approach to improve nursery and greenhouse management. Nackley's research program at Oregon State University focuses on addressing four challenges facing nursery and greenhouse production in Oregon: irrigation application, pest... Read More →
LO

Loren Oki

University of California, Davis
MS

Miro Stuke

University of Washington
SH

Soo Hyung Kim

University of Washington
US

Ursula Schuch

University of Arizona
YS

Youping Sun

Utah State University
Tuesday September 24, 2024 4:15pm - 4:30pm HST
Coral 1

Attendees (4)


Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link