Loading…
Thursday September 26, 2024 4:45pm - 4:55pm HST
Pecan (Carya illinoinensis) production in Georgia holds significant economic importance nationally. It is an energy-intensive practice with a very low output-to-input ratio. Pecan byproducts, notably pecan shells and husks, account for up to 49% of the nut but are underutilized. A greenhouse experiment was conducted at the USDA facility in Byron, Georgia in 2023 to study the feasibility of composted pecan shells as a growing media amendment for container-grown pecan seedlings. The composted pecan shell was collected from a local pecan grower’s three-year-old composted pile, while fresh goat manure was sourced from the Fort Valley State University’s farm. Various ratios (25, 50, 75, and 100%) of composted pecan shells, along with biochar, goat manure, and chicken manure, were compared to a commercial soil mix (control). All the growing amendments underwent steam sterilization at 98°F for a couple of hours to eliminate any potential contaminants such as weeds, bacteria, fungi, and parasites. Each treatment combination was placed in individual floats to sow the one-year-old stratified ‘Elliott’ seeds. Once the seedlings developed two juvenile leaves, they were transferred to 3-gallon pots to evaluate further soil and plant physiological parameters. The treatments were arranged in a randomized complete block design with four blocks, each containing one treatment combination. Various soil and plant parameters were evaluated monthly, including soil electrical conductivity and temperature, plant size, photosynthesis, stem water potential, and chlorophyll content, to assess the impact of soil amendments on soil and pecan seedling growth. Results determined that composted pecan shell outperformed others in terms of germination (~80%), while none of the seeds germinated in any chicken manure treatment combination. Remarkably, the growth performance of pecan seedlings under different pecan shell ratios was comparable to those grown in commercial soil mix, biochar, and goat manure, indicating good plant health. The stem water potential values overall ranged above -6 Bar, suggesting no signs of plant water stress throughout the study. However, the 100% goat manure treatment consistently showed seedlings with significantly lower chlorophyll content and photosynthetic activity, leading to the smallest plant size compared to the control and biochar treatments. These findings highlight the potential of composted pecan shells as a sustainable soil amendment for container-grown pecan seedlings, offering a novel approach to repurpose pecan byproducts to enhance soil quality, promote sustainable agriculture practices, and serve as an additional income source to pecan growers, thus contributing to the economic viability of pecan production in Georgia.
Speakers
ST

Srijana Thapa Magar

Kentucky State University
Co-authors
Thursday September 26, 2024 4:45pm - 4:55pm HST
South Pacific 3

Attendees (1)


Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link