Loading…
Friday September 27, 2024 3:45pm - 4:00pm HST
Climate change challenges all aspects of food production, including standard greenhouse products, such as tomatoes. The cause of climate change can be directly attributed to the rise in carbon dioxide (CO2) levels, leading to increased temperatures and drought severity. Tomatoes are the most produced fruit crop globally, and in addition to their economic benefits contain several vitamins and minerals essential for human health. The objective of this study was to assess the multi-variable effects of simulated climate change on tomato plants by investigating the combination of elevated CO2 (800 ppm vs 400 ppm), increased temperature (28℃ vs 21℃), and water deficit stress (20% decrease from control) across three development stages: juvenile, anthesis, and fully mature tomato. ‘Sweet ‘N’ Neat Scarlet’ tomatoes (Solanum lycopersicum) were grown in four plant growth chambers in a 2 x 2 x 2 factorial design with four replications. Quality parameters included photosynthetic efficiency, growth index, dry weight, flower number, fruit number, and fruit size. Inductively coupled plasma mass spectrometry (ICP-MS) and oxygen radical absorbance capacity (ORAC) analyses were measured at each of the three stages when applicable. Preliminary data suggests that higher temperatures and CO2 increase (p
Speakers
MV

Marlo Vandiver

West Virginia University
Co-authors
JT

Janet Tou

West Virginia University
NA
NW

Nicole Waterland

West Virginia University
NA
YM

Youyoun Moon

West Virginia University
NA
Friday September 27, 2024 3:45pm - 4:00pm HST
Nautilus 1

Log in to save this to your schedule, view media, leave feedback and see who's attending!

Share Modal

Share this link via

Or copy link