Loading…
Herbs Spices and Medicinal Plants clear filter
Wednesday, September 25
 

10:14am HST

Herbs, Spices, and Medicinal Plants 1 (HSMP 1)
Wednesday September 25, 2024 10:14am - 11:45am HST
Saffron (Crocus sativus) Production in North Central New Mexico - Saeid Zehtab Salmasi
Experiences Cropping Wasabi in Inland Oregon - Clint Taylor
Double-season production of hops (Humulus lupulus L.) with photoperiod manipulation in a subtropical climate - Shinsuke Agehara
Brewing Conditions and UV treatment affect Shelf Life of Cold-brew US-grown Tea - Yan Chen
Withering Duration and Drying Temperature Significantly Affect Postharvest Quality of Kratom (Mitragyna speciosa) - Mengzi Zhang
Consumer preference of saffron uses in baked goods and dishes - Hideka Kobayashi
Moderator
SZ

Saeid Zehtab Salmasi

Associate Professor and Research Director, New Mexico State University
Research Director of the Sustainable Agriculture Science Center of New Mexico State University in Alcalde
Wednesday September 25, 2024 10:14am - 11:45am HST
South Pacific 1

10:15am HST

HSMP 1 - Saffron (Crocus sativus) Production in North Central New Mexico
Wednesday September 25, 2024 10:15am - 10:30am HST
Saffron (Crocus sativus L.) holds a high economic value as the world's most expensive spice. It plays a crucial role in many small farm economies in countries such as Iran, India, Afghanistan, Greece, Morocco, Spain, and Italy. In this project the effects of three different corm size (10 ,9 , and 8 ) on saffron stigma’s yield were studied in hoop house and open field production systems in a randomized complete block design with three replications at Certified Organic Farm of the Sustainable Agriculture Science Center of New Mexico State University in Alcalde located in north central New Mexico. Saffron corms were planted 6 to 8 inches in depth and 6 inches apart on September 19, 2023. The saffron flowers were harvested from October 18th until November 6th, 2023, in different treatments. Flowering started earlier and the flowering period was longer in plots planted with bigger corms. Saffron flowers picked up in the morning and then the stigmas were separated and dehydrated at 100 °C for ten minutes. The first-year results showed that the highest number of flowers were obtained from 10 corm size plots. The highest yield of dehydrated stigmas was also harvested from 10 corm size in high tunnel production system with 3.43 Kg/ha (3.06 lbs./acre). The bigger corms of saffron produced significantly higher stigma yield than smaller ones; 2.84 kg/ha (2.53 lbs./acre) for 10 corms vs 0.89 kg/ha (0.79 lbs./acre) for 8 corms, however, the difference between saffron yield in high tunnel and open field production systems was not significant. In summary the outcome of this research shows that saffron can be produced successfully even in open field production system in northern New Mexico and using bigger corms for planting may produce higher saffron in the first year, although the evaluation of winter hardiness and the following years performance will be necessary.
Speakers
SZ

Saeid Zehtab Salmasi

Associate Professor and Research Director, New Mexico State University
Research Director of the Sustainable Agriculture Science Center of New Mexico State University in Alcalde
Co-authors
RH

Robert Heyduck

New Mexico State University
NA
Wednesday September 25, 2024 10:15am - 10:30am HST
South Pacific 1

10:30am HST

HSMP 1 - Experiences Cropping Wasabi in Inland Oregon
Wednesday September 25, 2024 10:30am - 10:45am HST
Wasabi (Eutrema japonicum) is a high-value and notoriously difficult crop traditionally cultivated in East Asia. There has been some limited commercial cultivation of the crop in the Pacific Northwest, including in the coastal mountains of Oregon. This presentation shares insights into the challenges and approaches to inland wasabi farming, focusing on environmental conditions, potential growing systems, and media types. Key points include: 1. Environmental Conditions: Wasabi has a narrow range of light, temperature, and water requirements and is prone to a myriad of fungal and bacterial diseases. Knowing this narrow range is essential to the practicality of commercial wasabi production. Balancing the ideal environmental factors for wasabi without creating disease outbreaks is a primary challenge in wasabi production. 2. Growing System
Speakers
avatar for Clint Taylor

Clint Taylor

Oregon State University - NWREC
Co-authors
CB

Chip Bubl

Oregon State University
NA
CO

Cynthia Ocamb

Oregon State University
NA
DM

Dalyn McCauley

Oregon State University
LN

Lloyd Nackley

Oregon State University
Lloyd Nackley is a plant ecologist who applies a systems approach to improve nursery and greenhouse management. Nackley's research program at Oregon State University focuses on addressing four challenges facing nursery and greenhouse production in Oregon: irrigation application, pest... Read More →
Wednesday September 25, 2024 10:30am - 10:45am HST
South Pacific 1

10:45am HST

HSMP 1 - Double-season production of hops (Humulus lupulus L.) with photoperiod manipulation in a subtropical climate
Wednesday September 25, 2024 10:45am - 11:00am HST
Hops (Humulus lupulus L.) have an ancient history of cultivation in temperate climates primarily as an ingredient of beer. However, growing hops in subtropical or tropical climates has been challenging because of non-optimal day length conditions. We examined the potential of subtropical hop production with photoperiod manipulation. ‘Cascade’ hops were grown in Florida, United States with extended day length (>16.5 hours) using light-emitting diode (LED) bulbs to inhibit flowering until sufficient vegetative growth was achieved. Phenology, plant growth, yield, and cone quality data were collected during the first two years after planting. With as little as 0.47 μmol/m2/s, photoperiod extension was effective in inhibiting flowering, while promoting vegetative growth. Uniform flowering was induced upon the discontinuation of photoperiod extension. As a result, plants achieved two growing cycles per year, with the spring and fall growing seasons running from February to July and July to December, respectively. Yield increased by 92% from Year 1 to Year 2 but decreased by 37% from the spring to fall growing season. The maximum yield was 465 kg/ha in Year 2 Spring. Cone quality was greatly affected by both year and season, with α acid, β acid, and total oil concentrations ranging from 2.7% to 6.2%, 1.9% to 3.2% and 0.14 to 0.53 mL/100 g, respectively. These results demonstrate that, with an aid of photoperiod manipulation for flowering control, ‘Cascade’ hops exhibit high phenological plasticity and acclimation capacity to subtropical climatic conditions. This study provides a foundation for developing the double-season hop production system in a subtropical climate.
Speakers
SA

Shinsuke Agehara

University of Florida
Co-authors
AA

Aleyda Acosta-Rangel

University of Florida
NA
JR

Jack Rechcigl

University of Florida
NA
Wednesday September 25, 2024 10:45am - 11:00am HST
South Pacific 1

11:00am HST

HSMP 1 - Brewing Conditions and UV treatment affect Shelf Life of Cold-brew US-grown Tea
Wednesday September 25, 2024 11:00am - 11:15am HST
Tea, Camellia sinensis, is grown around the world under diverse geographic and climatic conditions and can be cultivated as a specialty crop in the U.S. U.S. specialty tea growers cater to the high-quality specialty tea niche market, and innovations in mechanization and novel products increase profitability. The objective of this study was to develop a cold brew methodology that would maximize the flavor characteristics and shelf life of cold brew black teas to facilitate the development of new products. 'Black Magnolia' from the Great Mississippi Tea Co. (Brookhaven, MS) was used to determine combinations of cold brew conditions affecting taste and health-promoting compositions (polyphenol and caffeine), including selected combinations of tea-to-water ratio (1, 2, and 3g of tea per cup of water), temperature (40, 45, 50, 55, and 60°F), brewing time (6, 8, 10, 12, and 14 hours), and particle size (whole-leaf, coarse, and fine). Selected conditions were then used in a UV light experiment to compare shelf life (microbial growth at 2, 4, and 6 days after brewing) using hot water-brewed tea as a control. Results indicate that, for this specific black tea, 2g per cup at higher temperatures of 55 to 60°F resulted in comparable polyphenol contents to hot water brew, but lower caffeine concentrations. However, compared to lower temperatures, teas made at this range of temperatures resulted in a higher number of yeast and mold by day 4. Brewing at 45°F for 14 hours resulted in comparable polyphenol contents as hot water brew and was described with more positive words compared to a shorter brewing time during sensory surveys conducted on campus with over 100 students. Initial testing of UV light treatments for 0, 0.5, 1.0, and 2.0 hours of duration before cold brew indicated that UV light is insignificant in reducing microbial growth. Further research is needed to improve the UV treatment or use other methods to extend the shelf life of cold brew tea. The best brewing conditions obtained from this study could be of guidance for future large-scale consumer sensory evaluations that will compare the flavor of four U.S.-grown black teas to imported specialty teas and their health-benefiting compounds. This next study will provide essential and important information for U.S. tea growers and consumers on how U.S.-grown tea performs in comparison with internationally known black teas and potential enhancements to maximize the health benefits and popularity of U.S.-grown specialty tea.
Speakers
YC

Yan Chen

LSU AgCenter
Co-authors
ZX

Zhimin Xu

Louisiana State University School of Nutrition and Food Sciences
NA
Wednesday September 25, 2024 11:00am - 11:15am HST
South Pacific 1

11:15am HST

HSMP 1 - Withering Duration and Drying Temperature Significantly Affect Postharvest Quality of Kratom (Mitragyna speciosa)
Wednesday September 25, 2024 11:15am - 11:30am HST
Kratom (Mitragyna speciosa) is an ethnobotanical plant with high medicinal value that has been historically utilized in Southeast Asia as a traditional remedy for fatigue mitigation and productivity enhancement. Recently, it has attracted widespread attention, particularly in North America and Europe, for its potential for pain management and alleviating opioid withdrawal symptoms and has become an important source for future drug development. Postharvest processing represents a key step in the kratom farm-to-pharm chain where products undergo chemical modifications before reaching consumers. In this study, we investigated how different withering durations, drying temperatures, and lighting conditions could affect kratom postharvest product qualities. Leaves were harvested from cultivar H and mixed well before randomly assigned to one of four withering durations (0, 12, 24, and 72 h) at 25 ℃ in the dark and subsequently one of five drying temperatures (-40, 25, 40, 60, and 80 ℃). Additionally, leaves were dried at 25 ℃ under either light or dark. Overall, withering at 25 ℃ significantly increased mitragynine concentration. Compared to 0 h withering, a 12 h withering followed by drying at -40, 25, 40, or 60 ℃ increased mitragynine concentrations by 117%, 17-123%, 16-61%, and 43-103%, respectively. The 12 h withering increased the concentration of speciogynine and paynantheine by 27-28% and 35-67%, respectively, when leaves were dried below 40 ℃. In contrast, speciociliatine levels initially decreased during 12 or 24 h withering but subsequently elevated after the withering duration increased to 72 h. Drying temperatures and light exposure generally had little effect on the biosynthesis of most of the alkaloids. However, an alternation in kratom powder color was noticed for those with a short withering duration and subsequently a high drying temperature. Other minor alkaloids including corynoxine A, corynoxine B, speciofoline, isospeciofoline, mitraphylline, and ajmalicine were below the lower limit of quantifications. Taken together, our study shows that withering and subsequent drying temperatures have significant effects on the color and content of bioactive compounds of kratom, and further research on optimizing kratom postharvest processing is needed.
Speakers
MZ

Mengzi Zhang

Biological Scientist, University of Florida
Co-authors
BP

Brian Pearson

Oregon State University
NA
JC

Jianjun Chen

University of Florida
NA
Wednesday September 25, 2024 11:15am - 11:30am HST
South Pacific 1

11:30am HST

HSMP 1 - Consumer preference of saffron uses in baked goods and dishes
Wednesday September 25, 2024 11:30am - 11:45am HST
Saffron (Crocus sativus L.) is a perennial cormous crop, possibly originated in Iran, cultivated in the Mediterranean climate region, including Iran, Afghanistan, Spain, Greece, and Kashmir. Due to the labor-intensive harvesting and processing involved, saffron is known as the most expensive spice. Its production has seen a revival in certain regions of the U.S., and Kentucky State University has been evaluating its potential as a niche crop for small and limited-resource farmers in Kentucky since 2019. One objective of this portion of the study was to evaluate consumer preferences for saffron used in various recipes. Two sets of sensory evaluation were conducted with saffron containing cheesecakes and baked goods (i.e., pound cake and short bread). There were three types of cheesecakes (vanilla, lemon, and persimmon) with and without saffron flakes. Overall, test subjects preferred cheesecakes without saffron, with the lemon cheesecake without saffron being the most popular combination. In contrast, participants showed preference for saffron containing recipes over the ones without saffron for the sensory evaluation of both baked goods, especially shortbread. A preliminary test for taste testing was conducted with pound cake to determine the optimal content of saffron. There were three levels of saffron, which was first dissolved in water, and then added to mixture, for both pound cake and shortbread (0, 0.5 and 1.0 tbsp/recipe). The current findings suggest that consumers are favorable of baked goods when saffron is compatible and used in the correct amount and possibly in the correct form.
Speakers
HK

Hideka Kobayashi

Kentucky State University
Co-authors
SC

Sheri Crabtree

Kentucky State University
Wednesday September 25, 2024 11:30am - 11:45am HST
South Pacific 1

11:59am HST

Herbs, Spices, and Medicinal Plants (HSMP)
Wednesday September 25, 2024 11:59am - 1:10pm HST
Effects of Drought Stress on Secondary Metabolite Production and Yield in Ocimum Basilicum - Daniela Menendez
Effects of Thermal Processing and Drying on Nutritional Quality and Consumer Preference of Amaranthus viridis L. Value-added Product - Megan Reid
Ginseng Growth and Ginsenoside Contents According to Light Intensity - Minhee Kim
Evaluation of anticancer activity of perennial tree seed-derived extracts on various cancer cell lines - Hamin Lee
Exploring the Potential of Annonacin and 2-Deoxy-D-glucose on Non-Small Cell Lung Cancer Cells - Bhoj Raj Bhattarai
Responses and relationship between bioactive compounds and phenotypic traits in Dahurian angelica breeding lines - Eun Jeong Koh
Effects of Foliar Application of Humic Acid and NPK Fertilizers to the Soil on Important Growth Indices of Black Mustard - Keefah Al-Garallaa
Assessment of micropropagated ginger cultivars and generations on plant growth and rhizome yield in a greenhouse - Guochen Yang

Moderator
KA

Keefah AL-Garallaa

Mississippi State University
Wednesday September 25, 2024 11:59am - 1:10pm HST
South Pacific 2

12:00pm HST

HSMP - Effects of Drought Stress on Secondary Metabolite Production and Yield in Ocimum Basilicum
Wednesday September 25, 2024 12:00pm - 12:10pm HST
Climate change makes water stress a more prominent obstacle to maintaining the same yield and quality of harvestable crop biomass for consumers, posing a unique challenge to farmers who must compete for clean water resources with other stakeholders. Thus, farmers must adapt their irrigation strategies to remain profitable and relevant. Basil is a tender perennial crop from the family Lamiaceae that is grown as a culinary herb and as a source of essential oils. Sweet basil (Ocimum basilicum) is a model crop for understanding water stress in economically important crops due to its intolerance to drought stress and its unique phytochemical properties. Sweet basil produces different concentrations of different secondary metabolites in response to abiotic stress, such as eugenol and methyl chavicol. This study seeks to understand what chemical and physical changes occur to sweet basil under water stress within a greenhouse environment. Three different treatments of water stress controlled via drip irrigation and a separate control group were used to analyze the yield and secondary metabolite production within sweet basil. Wet weight, dry weight, height, and phytochemical concentrations were calculated for the different drought treatments. There was a significant relationship between the final height, dry and wet yield, and chemical concentration of the different water stress treatments. One of the most interesting findings of the study was that the high note of sweet basil, a phenylpropanoid known as eugenol, was found in similarly high concentrations throughout the different treatment groups. There were significant differences in concentration across terpenoids such as eucalyptol, germacrene D, and linalool. This study showed that there were significant effects on the yield and concentration of phytochemicals produced by sweet basil from drought stress.
Speakers
DM

Daniela Menendez

Florida International University
Co-authors
DS

Diego Salazar Amoretti

Binghamton University
NA
KJ

Krishnaswamy Jayachandran Jayachandran

Florida International University
NA
MB

Mahadev Bhat

Florida International University
NA
Wednesday September 25, 2024 12:00pm - 12:10pm HST
South Pacific 2

12:10pm HST

HSMP - Effects of Thermal Processing and Drying on Nutritional Quality and Consumer Preference of Amaranthus viridis L. Value-added Product
Wednesday September 25, 2024 12:10pm - 12:20pm HST
Economic opportunities have arisen to increase the production of specialty crops catering to ethnically diverse consumers. Opportunities to capture anticipated niche market growth for ethnic crops continue to grow. Amaranthus viridis L. (amaranth), a highly nutritious leafy vegetable, eaten cooked or raw, with a nutritional value similar to spinach, is widely cultivated, highly nutritious, and has medicinal properties. Studies were conducted to 1) evaluate two thermo-processing (steam and water blanching) and three drying methods (freeze, hot air, and infrared drying) for the development of amaranth value-added products and 2) analyze the effective thermo-processing and drying methods to maximize the phytonutrient contents and minerals in the vegetable. Two thermo-treatments, steam blanch (SB) and hot water (HB), and the control (C), three drying treatments, freeze-dried (FD), hot air dried (HAD), and infrared dried (ID) were used. The treatments were T1:FD(C), T2:HAD(C), T3:ID(C), T4:FD(SB), T5:HAD(SB), T6:ID(SB), T7: FD(HW), T8: HAD(HW), T9: ID(HW). Amaranth was harvested once per week and processed three times throughout the growing season (1st harvest (28 days after transplanting (DAT)), 2nd harvest (56 DAT) in the middle of the growing season, and the 3rd harvest (84 DAT) at the end of the growing season). Phytonutrients, ascorbic acid and β-carotene, rehydration capacity, and sensory evaluation were analyzed. Significant differences in phytonutrients (total phenolic content (TPC) and total flavonoid content (TFC)) were observed among treatments and harvest times, with the FD(C) treatment being significantly higher in TPC and TFC during the 1st and 2nd harvest when compared to the other treatments. Ascorbic acid was significantly higher in FD(C) and HAD(C) (419.33 mg/100g, dm and 203.3 mg/100g, dm, respectively). ID(C), ID(SB), ID(HW) and HAD(SB) were significantly lower in ascorbic acid when compared to the other treatments. Significant differences were also observed in β-carotene among treatments. For rehydration capacity, rehydration at 9 minutes showed the highest water absorbance for all treatments, with FD(C) and HAD(C) being significantly higher, while HAD(HW) and ID(HW) were significantly lower in water absorbance for the rehydration times of 3, 6 and 9 minutes. For the sensory evaluation, 59%, 73%, and 54% of respondents indicated that the rehydrated samples were just right for flavor, color, and texture, respectively; and 45% of respondents indicated that the overall quality of the rehydrated sample was good. This study provides valuable insights for the development of value-added products catering to ethnically diverse consumers.
Speakers
MR

MEGAN REID

University of Maryland Eastern Shore
Co-authors
BM

Byungrok Min

University of Maryland Eastern Shore
NA
CN

Caleb Nindo

University of Maryland Eastern Shore
NA
CC

Corrie Cotton

University of Maryland Eastern Shore
Wednesday September 25, 2024 12:10pm - 12:20pm HST
South Pacific 2

12:20pm HST

HSMP - Ginseng Growth and Ginsenoside Contents According to Light Intensity
Wednesday September 25, 2024 12:20pm - 12:30pm HST
Ginseng (Panax ginseng C.A. Meyer) is mainly cultivated in the Republic of Korea and China, and has been traditionally used as a medicinal plant in East Asia for the treatment of diseases such as hypertension, diabetes mellitus, liver and kidney dysfunction, mental disorders, and skin inflammation. Ginseng roots are cultivated after maturing at 3 to 6 years of age. The harvested ginseng roots are consumed and sold in various forms of products, such as fresh ginseng, red ginseng, and white ginseng. Ginseng is a shade-tolerant crop and requires shading facilities. It grows well with a light intensity of 10%, but its growth is hindered at light intensity above 20% due to high temperature. Therefore, it is cultivated with a light intensity set to 10% from April to October and harvested in October. However, if early harvesting is done in August to increase farm income, growth is low due to insufficient light. Therefore, a cultivation experiment was conducted with the light intensity set to 10% and 20% for the August harvest, and the yield and ginsenoside contents were compared with the October harvest. The yield of the 20% light intensity treatment group was 665 kg/10a, whereas the yield of the 10% light intensity treatment group was 572 kg/10a. The yield of the 20% treatment group was 16.3% higher than that of the 10% treatment group. According to the analysis on nine ginsenoside components including Rg1, the total ginsenoside contents in the 20% light intensity treatment group was 27.51 mg/g, which was 75.3% higher than that of the 10% light intensity treatment group at 15.69 mg/g. Specifically, Rg1, Re, Rb1, and Rc were 3.40, 7.29, 7.93, and 3.84 mg/g, respectively, more than twice as high as those in the 10% light intensity treatment group. Conclusively, a light intensity of 20% was determined to be optimal for maximizing ginsenoside cultivation for August harvesting.
Speakers
MK

Minhee Kim

South Korea, Ginseng&Medicinal Plant Research Institute, Chungcheongnam-do Agricultural Research and Extension Services
Co-authors
KS

Ka Soon Lee

Ginseng
NA
SI

Sun Ick Kim

Ginseng
NA
Wednesday September 25, 2024 12:20pm - 12:30pm HST
South Pacific 2

12:30pm HST

HSMP - Evaluation of anticancer activity of perennial tree seed-derived extracts on various cancer cell lines
Wednesday September 25, 2024 12:30pm - 12:40pm HST
According to the WHO, the global cancer incidence rate is increasing by more than 5% annually due to the rapid increase in the elderly population and continuous environmental degradation. The increasing rate of cancer incidence underscores the importance of developing health supplements and pharmaceutical ingredients derived from plants. Indeed, several anticancer drugs such as Taxol, vincristine, and vinblastine have been developed from plant-derived ingredients, serving as crucial resources in modern pharmaceutical development. This study evaluated the anticancer activity of extracts from seven different seeds against various cancer cell lines. Seeds from perennial trees such as Alnus japonica, Chamaecyparis obtusa, Cornus kousa, Phellodendron amurense, Pinus densiflora, Prunus sargentii, and Quercus glauca were used in the experiments. Extracts, prepared via ultrasonic extraction with 70% ethanol and concentrated to 100 µg·mL-1, were tested on lung (A549), prostate (LNCaP-LN3), melanoma (B16F10), colon (Caco-2, HCT15), and breast (MDA-MB-231) cancer cell lines using the MTT assay. In the lung cancer (A549) cell line, C. kousa, C. obtusa, and Q. glauca significantly inhibited cancer cell proliferation compared to the negative control (DMSO), with viability rates of 68.2%, 6.8%, and 44.7%, respectively. Prostate cancer (LNCaP-LN3) cells showed anticancer activity with extracts from six species, excluding P. sargentii, in the following order of cell viability: C. obtusa (8.2%) > C. kousa (15.8%) > A. japonica (35.1%) > Q. glauca (73.9%) > P. amurense (78.6%) > P. densiflora (86.3%). Cell viability was assessed for colon cancer cell lines Caco-2 and HCT15, where extracts from C. kousa (71.7% for Caco-2 and 69.9% for HCT15), C. obtusa (8.0% for Caco-2 and 7.1% for HCT15), and Q. glauca (89.9% for Caco-2) demonstrated significant inhibition of cell proliferation. For melanoma (B16F10) and breast cancer (MDA-MB-231) cell lines, extracts from C. kousa (63.8% and 66.3%, respectively) and C. obtusa (6.7% and 7.3%, respectively) showed strong anticancer activity, significantly reducing cell viability. This study suggests that the extracts from seven species of seeds can have a potent anticancer effect on specific cancer cell lines and confirms their potential as an important step in the development of anticancer ingredients derived from perennial tree seeds.
Speakers
HL

Hamin Lee

Chungbuk National University
Co-authors
JC

Ju-Sung Cho

Chungbuk Nationl University
NA
KP

Kyungtae Park

Chungbuk Nationl University
NA
YK

Youg-Rak Kwon

National Forest Seed Variety Center
NA
Wednesday September 25, 2024 12:30pm - 12:40pm HST
South Pacific 2

12:40pm HST

HSMP - Exploring the Potential of Annonacin and 2-Deoxy-D-glucose on Non-Small Cell Lung Cancer Cells
Wednesday September 25, 2024 12:40pm - 12:50pm HST
Annonacin is a natural compound found in the fruit of a number of members of the Annonaceae family, including soursop and Asimina triloba. This compound has promise in targeting vital metabolic pathways, inhibiting mitochondrial complex I, and exploiting the altered energy dynamics of cancer cells that lead to apoptosis. Non-small cell Lung Cancer (NSCLC) accounts for approximately 80% of all lung cancer cases and remains a leading cause of cancer-related mortality worldwide. Despite advancements in cancer treatment, the five-year survival rate of NSCLC is low, justifying the urgent need for innovative and effective therapeutic approaches. The aberrant energy metabolism, which is a hallmark of cancer, including NSCLC, known as the Warburg effect, makes it a potential target for therapeutic interventions. In addition, 2-Deoxy-D-glucose (2DG) is a glucose analog widely studied for its ability to target the glycolytic pathway of energy metabolism of cancer. The potential combination of Annonacin and 2DG acting synergistically to inhibit the growth of A549 NSCLC cells could lead to new treatment options. The objective of this study was to examine glycolytic and mitochondrial complex I inhibitors individually and in combination to target energy metabolism to inhibit A549 NSCLC cell growth as novel antitumor agents. The study was carried out in an in vitro model system using the A549 NSCLC cell line, where the NL20 Bronchial Epithelium cell line was used as a parallel control. Cells were treated with 0 µM, 2 µM, 4 µM, and 6 µM concentrations of Annonacin and 0 mM, 2.5 mM, 5 mM, and 10 mM concentrations of 2DG, both individually and in combination in triplicate experimental design with control. The MTT assay was employed to determine immediate cell viability and assess the applied treatment's cytotoxic effects. The oxidative stress in treated and control cells was determined through superoxide dismutase and glutathione peroxidase assays. Furthermore, the long-term proliferative capacity of the cells post-treatment was examined using a colony-forming assay. The implications of the combined application of 2DG and Annonacin on A549 NSCLC cell viability and potential as a treatment of NSCLC will be discussed. These findings need further investigation to elucidate the underlying mechanisms and explore the in vivo and clinical applicability details for the combined administration of Annonacin and 2DG's use in NSCLC treatment.
Speakers
BR

Bhoj Raj Bhattarai

Kentucky State University
Co-authors
AT

Avinash Tope

Kentucky State University
NA
CT

Cora Teets

Kentucky State University
NA
KP

Kirk Pomper

Kentucky State University
Dr. Kirk W. Pomper is the Professor of Horticulture in the College of Agriculture, Community, and the Sciences at Kentucky State University in Frankfort, Kentucky. As Horticulture Research Leader, his program is focused on research and Extension efforts toward developing pawpaw as... Read More →
Wednesday September 25, 2024 12:40pm - 12:50pm HST
South Pacific 2

12:50pm HST

HSMP - Responses and relationship between bioactive compounds and phenotypic traits in Dahurian angelica breeding lines
Wednesday September 25, 2024 12:50pm - 1:00pm HST
Dahurian angelica (Angelica dahurica (Fisch. ex Hoffm.) Benth.
Speakers
EJ

Eun Jeong Koh

Gyeongsangbuk-do Agricultural Research
NA
Co-authors
BS

Beong Sung Kim

Gyeongsangbuk-do Agricultural Research
NA
JK

Jiwon Kim

Gyeongsangbuk-do Agricultural Research
NA
JH

Joong Hwan Lee

Gyeongsangbuk-do Agricultural Research
NA
Wednesday September 25, 2024 12:50pm - 1:00pm HST
South Pacific 2

1:00pm HST

HSMP - Effects of Foliar Application of Humic Acid and NPK Fertilizers to the Soil on Important Growth Indices of Black Mustard
Wednesday September 25, 2024 1:00pm - 1:10pm HST
Humic acid that improves plant growth and yield indices such as fresh and dry weights, plant height. Field experiment was conducted at the Al-Mussaib Technical Institute/Iraq during the 2022-2023 season to study the effect of adding NPK complex fertilizer to the soil and spraying with organic fertilizer (Humic acid) on the growth and yield of black mustard plants, according to a randomized complete block design (RCBD) with three replications. In this study, the effect of foliar application of Humic acid and/or fertilizers of NPK on the growth characteristics of black mustard (Brassica nigar) in field conditions were compared. According to the results, the foliar application of Humic acid The results were analyzed according to analysis of variance, and the means were compared using the least significant difference (LSD) test under the probability level of 0.05.A two-factor experiment (3×3) was carried out. The first factor was the addition of a balanced NPK complex fertilizer (20:20:20). At levels of (0, 30, or 60) kg/dunum in two batches, the first two weeks after germination, and the second when flowering begins. The fertilizer was placed about 10 cm under the plant in the furrows and covered with dirt, then watered after fertilization. The second factor was spraying with three concentrations of organic fertilizer (Humic acid) (0, 2, or 4) ml.l-1. It was observed from the results that adding NPK complex fertilizer and organic fertilizer (Humic acid) has a significant effect on the characteristics of vegetative growth, as is evident from the fact that the levels of NPK complex fertilizer and spraying with organic fertilizer (Humic acid) have a significant effect on the productive characteristics of the plant. It is conclude from this experiment that the most effective treatment that can be used to feed the black mustard plant under the conditions of this experiment, and which achieved the best results in improving the vegetative and productive characteristics of the plant, is the 60 kg overlap treatment. 1 dunam-1 NPK with spraying three times with 2 ml.l-1 of organic fertilizer (Humic acid), which improved the characteristics of vegetative growth and gave the highest rate of mustard number. Plant-1 and number of seeds. Mustard-1 and seed weight. Plant-1 and the amount of seed yield per dunum. application of 45 ppm humic acid with 60/kg – per dunum (per 2500 square meters) would be the best option to maintain better growth, yield and quality in black mustard.
Speakers
KA

Keefah AL-Garallaa

Mississippi State University
Wednesday September 25, 2024 1:00pm - 1:10pm HST
South Pacific 2

1:10pm HST

HSMP - Assessment of micropropagated ginger cultivars and generations on plant growth and rhizome yield in a greenhouse
Wednesday September 25, 2024 1:10pm - 1:20pm HST
Our research demonstrated micropropagated ginger helped solve seed ginger sourcing issue for this “niche” market crop. Traditionally, farmers would save ginger rhizomes from the previous year’s harvest, store over winter, and then use as seeds for the upcoming growing season. This research was to determine if micropropagated ginger generations would affect ginger growth and yield. We studied nine ginger cultivars (BB, BG, BK, CW, HY, MD, PY, KY, and KM) from various tissue culture (TC) generations (TCF1, TCF2, TCF3, and TCF4). TCF1 seedlings were initially planted (March 2023), and then transplanted with TCF2, TCF3 and TCF4 from previous years’ study, into individual grow bags (May 2023) with one seedling per 10-inch grow bag (2:1 metro mix:compost). Plants were placed on a bench inside a greenhouse with a completely randomized design (CRD) with 20 cultivar/TC Generation combinations, 5 replications per cultivar/generation. We collected growth data (stem number, diameter, length, and SPAD), yield data (number of rhizome pieces per seedling, weight of individual rhizome piece/finger, weights of biological root, edible root and total rhizome weight), and PAR of individual plants. Data was then analyzed using SAS OnDemand for Academics with PROC GLM at the 0.05 level of significance. There was a significant effect as the number of TC generations increased, with stem length (TCF1 – 91.8, TCF2 – 91.0, TCF3 – 103.5, and TCF4 – 101.5 cm) and stem diameter (TCF1 – 6.2, TCF2 – 6.4, TCF3 – 8.1, and TCF4 – 8.1 mm) increasing, while number of stems (TCF1 – 19.0, TCF2 – 18.3, TCF3 – 10.4, and TCF4 – 9.9) decreased on average. TC generations had significant effect on rhizome yield. Individual pieces of ginger rhizome decreased in number (TCF1 – 37.9, TCF2 – 31.1, TCF3 – 28.9, and TCF4 – 28.0) but increased in size (weight) (TCF1 – 12.3, TCF2 – 16.8, TCF3 – 25.4, and TCF4 – 23.1 g) as number of TC generations increased. Similarly, biological root weight significantly decreased (TCF1 – 175.9, TCF2 – 195.3, TCF3 – 42.0, and TCF4 – 52.9 g). Edible root weight significantly increased (TCF1 – 443.9, TCF2 – 460.6, TCF3 – 700.6, and TCF4 – 641.0 g). There was a slight upward trend of rhizome yield as TC generations increased (TCF1 – 619.9, TCF2 – 671.3, TCF3 – 761.2, and TCF4 – 709.5 g).
Speakers Co-authors
DT

Daniel Tetteh

North Carolina A
NA
JR

Julia Robinson

North Carolina A
NA
WL

William Lashley

North Carolina A
NA
ZM

Zipporia Moore

North Carolina A
NA
Wednesday September 25, 2024 1:10pm - 1:20pm HST
South Pacific 2
 
Thursday, September 26
 

10:00am HST

Specialty Crops Collaboration Session
Thursday September 26, 2024 10:00am - 11:00am HST
A forum for discussion of potential collaborations with regards to specialty crops – i.e. hemp, herbs, medicinal plants, and tropicals, breeding, production, etc.
Thursday September 26, 2024 10:00am - 11:00am HST
Coral 4

1:59pm HST

Herbs, Spices, and Medicinal Plants 2 (HSMP 2)
Thursday September 26, 2024 1:59pm - 3:45pm HST
Hydroponic Production of Seed Ginger Rhizomes in Virginia - Christopher Mullins
Enhancing Monoterpene Indole Alkaloid Production in Catharanthus roseus Through Controlled Environment Cultivation and Hormone Applications - Matthew Housley
Multipronged Strategies to Combat Seed-Piece and Soil-borne Diseases of Ginger - Zelalem Mersha
Seed emergence of Fagonia indica, a plant with potential chemistry active against breast cancer. - Clinton Shock
Impact of Polyploid Induction on Apigenin Production in Parsley - Rebekah Maynard
Alzheimer’s Disease: Prospecting for Sterubin in California Yerba Santa - Clinton Shock
Genomic Variation in Wild Sabadilla (Schoenocaulon officinale, Melanthiaceae) Populations for Key Phenotypic Traits of Interest for Domestication and Breeding - Albert Radloff

Moderator
RM

Rebekah Maynard

University of Georgia
Thursday September 26, 2024 1:59pm - 3:45pm HST
Kahili

2:00pm HST

HSMP 2 - Hydroponic Production of Seed Ginger Rhizomes in Virginia
Thursday September 26, 2024 2:00pm - 2:15pm HST
The length of field growing season in the temperate and subtropical regions of the United States including Virginia, does not allow ginger (Zingiber officinale) rhizomes to mature naturally. As a result, saving rhizomes as seeds is often impossible and the supply of seed ginger rhizomes (seeds) has been mostly from Hawaii. To mitigate this challenge, Cooperative Extension at Virginia State University attempted to produce ginger seeds hydroponically in a greenhouse for two years. In 2022/23, cultivar Chinese Ginger (4-6 buds/rhizome) was presprouted in the greenhouse using 1-gallon pots filled with soilless media in January and transplanted into 20-gallon fabric containers filled with soilless media or pine bark on May 6 or 17, 2023. Plants were fertigated on weekdays with a nutrient stock solution containing 6 oz 4-18-38 plus micros, 3 oz magnesium sulfate and 8 oz calcium nitrate per gallon. Seed harvests took place from January 15 to March 18, 2024. The yield was significantly higher with soilless media (12.7 lb./plant) than with pine bark (11.1 lb./plant) although the marketable yield was not statistically different. Plants in soilless media were difficult to harvest (heavy and wet soil, tangled roots). Marketable yield was the highest for plants harvested from 240-269 days after transplanting (DAT), followed by 270-289 DAT. Harvests after 290 DAT had 37-53% culls. The overall yield was not different in terms of transplanting dates, but May 6 transplanting had significantly less marketable rhizomes compared to May 14 transplanting. The first-year results favored using pine bark and harvesting 260-290 DAT. In 2023/24, ‘Blue Ring’ and ‘Yellow Ginger’ were added. Pre-sprouting started in March and transplanting occurred in late May 2023 with only pine bark as the media type. Fertigation and irrigation were discontinued in mid-December to allow media to dry. The yield of ‘Chinese Ginger’ raged from 11.3 lb./plant in early November 2023 to 13.7 lb./plant in late February 2024, indicating possible early harvests and curing if storage space is available, which would avoid heating greenhouse in deep winter. ‘Chinese Ginger’ had the highest yield (13.8 lb./plant), followed by ‘Yellow Ginger’ (12.5 lb./plant) and ‘Blue Ring’ (9.7 lb./plant). All three cultivars had 10-20% culls due to rotting (disease) and scarring. Our results proved the feasibility of ginger seed production in local greenhouses and the great yield with a hydroponic system. We will refine the system and test the quality of seeds in field and high tunnels in 2024.
Speakers Co-authors
CM

Christopher Mullins

Virginia State University
SG

Sanjun Gu

Virginia State University
Thursday September 26, 2024 2:00pm - 2:15pm HST
Kahili

2:15pm HST

HSMP 2 - Enhancing Monoterpene Indole Alkaloid Production in Catharanthus roseus Through Controlled Environment Cultivation and Hormone Applications
Thursday September 26, 2024 2:15pm - 2:30pm HST
The monoterpene indole alkaloids (MIAs) Vincristine and Vinblastine are medicinally important anti-tumor chemotherapy drugs derived from Catharanthus roseus metabolites, but the production of these alkaloids is difficult due to low levels in plant tissue and cost-prohibitive extraction methods. Cultivation of C. roseus in controlled environment systems could allow for increased production of desirable metabolites. There currently is a lack of knowledge concerning hydroponic and controlled environment production of C. roseus for alkaloid production. In two separate experiments, C. roseus was grown in deep water culture hydroponics (DWC) to determine its suitability for hydroponic cultivation and the effect of applying the plant hormones jasmonic and salicylic acids on MIA levels. In experiment 1, two cultivars, ‘Sunstorm Mix’ and ‘Cora Mix’, were cultivated under greenhouse conditions in DWC with two substrates, rockwool (Grodan AO 36/40) or 75% peat: 25% coir ( Jiffy Preforma *HP* DJ) and two fertilizer solution concentrations [150 or 300 mg/L N using a 15N-2.2P-12.4K water-soluble fertilizer (Jack’s Professional® LX 15-5-15 Cal-Mag LX)]. Shoot and root fresh and dry weight (SFW, SDW, RFW, RDW), leaf chlorophyll (CCI) and anthocyanin content (ACI), and total alkaloids (TA) were analyzed. The most favorable combination for many plant growth parameters measured was ‘Sunstorm Mix’ with Jiffy at 150 mg/L N, showing higher SFW, SDW, RFW, and RDW compared to other combinations. In experiment 2, ‘Sunstorm Apricot’ was cultivated under greenhouse conditions in DWC with the same75% peat: 25% coir using a modified Sonneveld solution at 150 mg/L N. Jasmonic and salicylic acids were applied at three rates and at two time points [34 and 41 days after transplant (DAT)]. Two sets of leaf samples were collected at 6,12,18 and 24 hours after application (HAA) and analyzed for the MIAs Vincristine and Vinblastine. Plants were destructively harvested 47 DAT for measurement of growth parameters FSW, FRW, DSW, and DRW. Together, these experiments assisted in improving the crop production for alkaloid use in healthcare and other applications.
Speakers
MH

Matthew Housley

University of Georgia
Co-authors
AM

Anish Malladi

University of Georgia
NA
JL

Jason Lessl

University of Georgia
NA
RF

Rhuanito Ferrarezi

University of Georgia
NA
RB

Robin Buell

University of Georgia
NA
Thursday September 26, 2024 2:15pm - 2:30pm HST
Kahili

2:30pm HST

HSMP 2 - Multipronged Strategies to Combat Seed-Piece and Soil-borne Diseases of Ginger
Thursday September 26, 2024 2:30pm - 2:45pm HST
Ginger (Zingiber officinale Roscoe) is esteemed for its diverse uses in flavoring beverages, enhancing cuisines and offering medicinal benefits such as aromatherapy and home remedies. Yet, its global production struggles to meet demand due to persistent seed-piece and soil-borne diseases (SSDs) caused by fungi, bacteria, oomycetes and nematodes. Lack of genetic diversity because of vegetative propagation exacerbates the situation. This study explored the efficacy of hot water treatment (HWT, 47°C for 30 minutes or 52°C for 10 minutes), Trichoderma-based biocontrol products (BPs, RootShield®, RootShield®Plus) and chitosan (1 or 5g/L in 1% HCl) alone or in combination with each other using ‘Chinese’ variety grown in a 10-lber grow-bags in a high tunnel. Fusarium oxysporum f.sp. zingiberi) was inoculated (2 X 103 conidial suspension/ml) prior to and after HWT, BPs and / or Chitosan. Results showed significantly higher mortality when seed-pieces were treated and then inoculated with pathogen before planting than vice versa. In one of the experiments, ginger plants grew significantly taller when treated chitosan (5g/L) when compared with non-treated control. Dipping seed-pieces in BPs also showed significantly higher growth and yield compared to only HWT or the non-treated control. The research contributes components that can be added towards developing integrated preventative and curative measures to mitigate SSDs. Recently, leaf spot caused by Curvularia sp. and postharvest infections by Pythium sp. and Penicillium sp. are under investigation. Scouting research plots in high tunnels and a grower’s greenhouse also revealed arthropod damages by grasshoppers, caterpillars, mites and sucking insects in protected systems.
Speakers
ZM

Zelalem Mersha

Virginia State University
Thursday September 26, 2024 2:30pm - 2:45pm HST
Kahili

2:45pm HST

HSMP 2 - Seed emergence of Fagonia indica, a plant with potential chemistry active against breast cancer.
Thursday September 26, 2024 2:45pm - 3:00pm HST
Phytochemicals from the genus, Fagonia, have potential beneficial effects on human health. Fagonia indica is a Pakistani traditional herbal medicine thought to be useful for the prevention and treatment of breast cancer Acid-hydrolyzed extracts of Fagonia indica have bioactivity on breast cancer MCF-7 cells in vitro. Horticultural production of Fagonia indica is largely undeveloped. Seeds planted without special treatment show poor emergence and come up slowly over many weeks. Seed treatments with vernalization, scarification, gibberellic acid soaking and their interactions were tested. Seed were treated and planted into mulch. Less than 1 percent of untreated seed emerged within 3 weeks of planting. Both seed scarification and gibberellic acid greatly enhanced emergence. Vernalization had a small effect on total emergence but did increase seedling emergence during the first two weeks following planting, Scarification and gibberellic acid could be refined by making variations in these practices.
Speakers
CS

Clinton Shock

Scientific Ecological Services
Thursday September 26, 2024 2:45pm - 3:00pm HST
Kahili

3:00pm HST

HSMP 2 - Impact of Polyploid Induction on Apigenin Production in Parsley
Thursday September 26, 2024 3:00pm - 3:15pm HST
Apigenin, an anticancer secondary metabolite, is produced in fruits, vegetables, and herbs, and has been used to prevent patient resistance to cancer treatments. Petroselinum crispum (parsley) is one of the highest natural producers of apigenin. Three parsley cultivars, ‘Darki’, ‘Giant of Italy’, and ‘Wega’, were trialed in an indoor vertical hydroponic system to determine biomass production and apigenin accumulation. The cultivar ‘Giant of Italy’ was selected as the superior cultivar with 0.16 mg apigenin accumulated in each plant and significantly higher biomass than the other cultivars. A viable strategy for increasing secondary metabolite production in plants is through polyploid induction. Although polyploid induction has not previously been used to increase apigenin, it has been used to increase production of other secondary metabolites including quercetin and kaempferol. ‘Giant of Italy’, which has been reported as 2n = 2x = 22, was induced to form tetraploid tissue by treating seeds with an antimitotic agent. Seed germination decreased with increasing treatment concentration and the surviving seeds were grown to maturity in a greenhouse. New leaf tissue was harvested for analysis, and tetraploid cells were confirmed using flow cytometry. Polyploid induction of ‘Giant of Italy’ in this study suggests potential for elevated apigenin production.
Speakers
RM

Rebekah Maynard

University of Georgia
Co-authors
JS

Joonhyuk Suh

The University of Georgia
NA
LL

Leonardo Lombardini

The University of Georgia
NA
SO

Samuel Ogundipe

The University of Georgia
NA
Thursday September 26, 2024 3:00pm - 3:15pm HST
Kahili

3:15pm HST

HSMP 2 - Alzheimer’s Disease: Prospecting for Sterubin in California Yerba Santa
Thursday September 26, 2024 3:15pm - 3:30pm HST
California yerba santa (Eriodictyon californicum) is a chaparral shrub of western California and south western Oregon. Its leaves are rich sources of natural flavonoids. Leaves collected from wild stands in general contain the flavonoids homoeriodictyol, eriodictyol, hesperetin, and smaller amounts of other flavonoids. These flavonoids are of possible medical value and are subjects of intensive medical research. California yerba santa leaves containing substantial amounts of the flavonoid sterubin would be of special interest due to sterubin’s potential activity against the enzymatic and inflammatory pathways leading to Alzheimer’s disease in humans as discovered by the Salk Institute of La Jolla, California. We collected leaf samples from SW Oregon through California over the range of plant distribution. Not all areas were sampled. Total flavonoid content in excess of 10 percent of leaf dry weight were common. Leaves with sterubin content were relatively rare. Sterubin content of several samples exceeded 5 percent of leaf dry weight.
Speakers
CS

Clinton Shock

Scientific Ecological Services
Co-authors
MW

Mei Wang

USDA, ARS, NPURU
Thursday September 26, 2024 3:15pm - 3:30pm HST
Kahili

3:30pm HST

HSMP 2 - Genomic Variation in Wild Sabadilla (Schoenocaulon officinale, Melanthiaceae) Populations for Key Phenotypic Traits of Interest for Domestication and Breeding
Thursday September 26, 2024 3:30pm - 3:45pm HST
Sabadilla (Schoenocaulon officinale), a perennial geophytic species with various medicinal properties and historical uses as a natural insecticide or “green pesticide”, has been used by human cultures in the Americas for >2,000 years. Its history parallels the domestication of pyrethrum (Chrysanthemum cinerariifolium) in Europe with similar green pesticidal properties, although the active ingredients differ. Alkaloids extracted from sabadilla seeds have been used to control many insect pests also killed by pyrethrum as well as additional insect pests. With the renewed consumer interest in botanically derived products and the growth of organic chemical industries, S. officinale has re-emerged as a viable source for insect management. To meet market demands, rapid crop domestication must occur. However, sabadilla is an herbaceous perennial geophyte (tunicate bulbs) with an extended juvenility period of at least 64 wks and little is known about the phenotypic and genetic structure of wild populations, alkaloid content variation, and flowering times from seed. Current production is limited to wild-harvested seed (open-pollinated) in Venezuela which is threatening native populations. The purpose of this study was to assess phenotypic and genotypic structure of wild sabadilla populations and seed lots; species comparison with S. texanum were also performed. Through introduction of wild-sourced composite seed into a modern breeding and cropping system, phenotypic traits (rate of seed germination, growth rates, factors of flowering, timing of seed maturity, seed yield, and alkaloid content) were assessed in multiple locations. Genotypic analyses (GBS; DArTseqLD) were used to identify low density SNPs and determine genetic structure within and among wild species populations. Seed lots from varying locations in Venezuela showed distinct SNP arrays with little overlap. SNP-trait association of seed germination weeks was an unexpected, rather tight linkage. Both species are genetically distinct from each other. Phenotypic and genotypic data will be integrated with a genome-wide association study (GWAS) to identify SNP-trait associations and aid in marker-assisted selection.
Speakers
avatar for Albert Radloff

Albert Radloff

University of Minnesota
Co-authors
NA

Neil Anderson

University of Minnesota
NA
Thursday September 26, 2024 3:30pm - 3:45pm HST
Kahili
 


Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
  • Career and Professional Development
  • Colloquium
  • Competitions
  • General - Registration/Speaker Center /etc.
  • Hort Theater & Collaboration Center
  • Interactive Workshop
  • Interest Group Session
  • Keynotes and Featured Sessions
  • Meals and Tours
  • Meetings - Committee/Division/interest Group
  • Oral presentation (Individual talk)
  • Oral Sessions
  • Poster presentation (individual talk)
  • Poster Session
  • Reception
  • Ticketed Events