Loading…
Ornamental Plant Breeding clear filter
Tuesday, September 24
 

10:00am HST

Workshop: Specialty Crop Community Databases and Breeding Data Management Tools
Tuesday September 24, 2024 10:00am - 12:00pm HST
In this interactive workshop, participants will be provided training on how to use Rosaceae (GDR, www.rosaceae.org), Vaccinium (GDV, www.vaccinoum.org) and Citrus (www.citrusgenomedb.org) specialty crop databases resources, as well as the Breeding Data Management tools, BIMS (www.breedwithbims.org), and the Field Book App for phenotype data collection. Using a case-study approach we will focus on how to use these integrated resources most efficiently for research and crop improvement efforts, how to apply FAIR data principles to sharing and submitting research data to these databases at the time of publication and facilitate a robust dialogue between researcher, breeders and the development team on needed improvements and long-term sustainability options for these resources.

This interactive workshop will bring together researchers and breeders to accelerate research and crop improvement in specialty crops. It will provide training and feedback on how to most effectively use the NIFA SCRI and National Research Support project 10 (NRSP10) funded Rosaceae, Citrus, and Vaccinium specialty crop databases and breeding data management resources (BIMS and Field Book), learn how to follow FAIR data principles, foster better two-way communication for increased feedback from researchers on further development of these resources, and continue to build a robust community around these research and crop improvement tools. The trainers include users and developers of these resources, ranging from early career to well-known and respected research enabling resource generators.

The Genome Database for Rosaceae (GDR), Genome Database for Vaccinium, and Citrus Genome Database (CGD) offer critical resources and tools to enable genomic, genetic, and breeding research for fruit, nut, and ornamental crops of great economic importance to the U.S. In addition, BIMS (BreedwithBIMS.org) and the Field Book APP provide widely used tools for managing plant breeding program data. While these resources are heavily used worldwide, many researchers are unaware of the full potential of using them and how they can contribute their own data for wider recognition and reuse. This interactive workshop aims to bridge this knowledge gap by providing hands-on training for specialty crop researchers on how to best use these resources and contribute their data. The workshop will also solicit ideas from participants on how to improve these databases and discuss the various options to make them sustainable in the long term. The workshop will bolster the utilization of integrated big data, promote future data sharing, and ensure that data is FAIR (Findable, Accessible, Interoperable, and Reusable).

The workshop aims to bring together researchers to accelerate research by more effective use of specialty crop databases and breeding data management resources, encouraging data submission at the time of publication, and gaining feedback from researchers. Through hands-on training, participants will become more familiar with the database resources and breeding data management tools, learn how to submit their data, and provide essential input for improving these databases and their long-term sustainability.

Coordinator(s)
  • Dorrie Main, Washington State University, Pullman, WA, United States
Moderator(s)
  • Cameron Peace, Washington State University, Horticulture, Pullman, WA, United States

Speaker/Participant(s)
  • Dorrie Main, Washington State University, Pullman, WA, United States
Introduction to the Workshop and Specialty Crop Research Databases (15 mins)

  • Jodi Humann, Washington State University, Horticulture, Pullman, WA, United States
How to efficiently use integrated genomics data and tools for research (20 mins)

  • Sook Jung, Washington State University, Horticulture, Pullman, WA, United States
    How to efficiently use integrated genetics data and tools for research (20 mins)

  • Nahla Bassil, USDA ARS, National Clonal Germplasm Repository, Corvallis, OR, United States
    How to efficiently use integrated germplasm and genotype data for research (15 mins)
    Summary:

  • Trevor Rife, Clemson University, Plant and Environmental Sciences Department, Florence, SC, United States
    How to use the Field Book App for phenotypic data collection (15 mins)
  • Sushan Ru, Auburn University, Auburn, United States
    How to use the Breeding Information Management System, BIMS, for Crop Improvement (20 mins)
  • Cameron Peace, Washington State University, Horticulture, Pullman, WA, United States


Moderator
CP

Cameron Peace

Washington State University
Speakers
avatar for Dorrie Main

Dorrie Main

Professor, Washington State University
I am a member of the Pullman Charter School Initiative team and am particularly interested in how to set up and maintain a thriving Washington State Charter School to serve the needs of Eastern Washington students.
SR

Sushan Ru

Auburn University
JH

Jodi Humann

Washington State University
Tuesday September 24, 2024 10:00am - 12:00pm HST
Coral 2

1:29pm HST

Ornamental Plant Breeding (OPB)
Tuesday September 24, 2024 1:29pm - 2:00pm HST
Create Novel Interspecific Hybrids between Tuberous Begonia and B. semperflorens by Using Embryo Rescue Technique - Yen Ming Chen
Breeding the Unbreedable: Innovating the Generation of Sterile Triploid Lantana through Open-Pollinated Interploidy Crosses - Brooks Parrish
Tetraploid plants of Samanea (Albizia) saman on diploid roots grew similarly to mixoploid and diploid plants on diploid roots while tetraploid plants on tetraploid roots were inferior to triploid plants on triploid roots - Alberto Ricordi

Moderator
BP

Brooks Parrish

University of Florida
Tuesday September 24, 2024 1:29pm - 2:00pm HST
South Pacific 2

1:30pm HST

OPB - Create Novel Interspecific Hybrids between Tuberous Begonia and B. semperflorens by Using Embryo Rescue Technique
Tuesday September 24, 2024 1:30pm - 1:40pm HST
Genus Begonia is prominent ornamental bedding and potted flower crop, encompassing types such as Rieger Begonia (Begonia × hiemalis), Tuberous Begonia (Begonia tuberhybrida), and B. semperflorens, which are extensively cultivated. Building upon the breeding methodology of Rieger Begonia, this study endeavors to utilize Tuberous Begonia as the maternal parent and integrate the attributes of B. semperflorens to develop innovative interspecific hybrid varieties. Interspecific hybridization was accomplished by using Tuberous Begonia 'Fortunate' as the female parent and B. semperflorens as pollen donor through embryo rescue techniques, resulting in successful interspecific offsprings. Flow cytometry analysis revealed the expected DNA content combination in the hybrids. Furthermore, Random Amplified Polymorphic DNA (RAPD) analysis confirmed the authenticity of the interspecific hybrids by exhibiting specific bands of both parents. The plant type, basal branching habit, and leaf shape of the hybrids resembled those of the male parent, B. semperflorens, while the double flower characteristic inherited from the female parent. Additionally, the hybrids exhibited year-round flowering without requiring photoperiod treatment and showed no apparent dormancy, rendering them suitable for continuous production. These hybrids are also exhibiting robust branching habits and possess distinctive plant traits compared to commercially available Rieger Begonias. They are particularly suited for cultivation in hot and humid regions. Evaluation of production and growth advantages indicated their capability for year-round supply and commercial production. Applications for Plant Variety Rights have been submitted for these hybrids in Taiwan.
Speakers
YM

YEN MING CHEN

National Chung Hsing University
Tuesday September 24, 2024 1:30pm - 1:40pm HST
South Pacific 2

1:40pm HST

OPB - Breeding the Unbreedable: Innovating the Generation of Sterile Triploid Lantana through Open-Pollinated Interploidy Cros
Tuesday September 24, 2024 1:40pm - 1:50pm HST
This study presents a groundbreaking field breeding strategy for Lantana camara, a plant celebrated for its ornamental value yet criticized for its invasive tendencies. Traditional hand pollination techniques for lantana are labor-intensive, as each flower produces only one seed, making the generation of significant populations time-consuming. Although open pollination represents an alternative for seed production, the reliability of generating sterile triploids through interploidy crosses has been questionable. Addressing these challenges, this research innovatively employs open-pollinated breeding between diploid and tetraploid populations to efficiently produce sterile triploid cultivars. The method leverages male-sterile tetraploids for open pollination with female-sterile, male-fertile diploids, yielding 544 triploid seeds within five weeks and proving the effectiveness of interploidy hybridization. Moreover, diploid populations in an all-by-all cross setup produced over 2,000 seeds in the same period, eliminating the need for hand pollinations. Nonetheless, the development of tetraploid breeding lines encountered obstacles due to insufficient pollen transfer, likely resulting from low pollen production, although selfing within hybrid lines remained feasible in an open-pollinated field setting. These findings significantly advance the fields of ornamental breeding and invasive species management, providing fresh perspectives on the cultivation and control of Lantana camara. Demonstrating the capability to rapidly produce large volumes of sterile triploid lines with minimal labor, this study lays the groundwork for the broader availability of non-invasive Lantana camara alternatives in the future.
Speakers
BP

Brooks Parrish

University of Florida
Co-authors
ZD

Zhanao Deng

University of Florida
Tuesday September 24, 2024 1:40pm - 1:50pm HST
South Pacific 2

1:50pm HST

OPB - Tetraploid plants of Samanea (Albizia) saman on diploid roots grew similarly to mixoploid and diploid plants on diploid
Tuesday September 24, 2024 1:50pm - 2:00pm HST
Many legume trees are notorious for their prolific production of seedpods, which are usually large and in many cases stink when cracked open. Such pods affect both the beauty and sensory perception of the tree, and may be slippery and hazardous on walking surfaces. For example, Samanea (Albizia) saman, which has naturalized in many tropical and subtropical places and is commonly known in Hawaii as monkey pod tree, is a favorite landscape tree in Hawaii for its large canopy, especially in parking lots and parks. Unfortunately, this species produces a large amount of sticky pods that stick to shoes and tires, and can create an objectionable mess, a high volume of green waste and high maintenance of parking lots. The seedpods are heavy to rake and can cause damage to lawn mower blades. Seedless cultivars would have no potential to become invasive and their maintenance cost would be much lower. Seed-bearing ornamental plants can be converted to triploid, non-seed-bearing forms, and thereby eliminate their invasiveness and reduce their maintenance. Triploid plants rarely produce functional gametes, because they do not undergo normal meiosis, and the resulting sterility accounts for the economically valuable seedlessness of triploid bananas, limes, and seedless watermelons. Sterile nursery plants can be used for landscaping virtually without any possibility to become invasive. In a field trial at the University of Hawaii Waimanalo Research Station, it was observed that tetraploid plants of Samanea (Albizia) saman on diploid roots grew similarly to mixoploid and diploid plants on diploid roots. These tetraploid plants were developed by treating the apical meristem of diploid seedlings with 0.1% colchicine for 48h. Therefore, the root system remained diploid, while the above ground portion of the plants were tetraploid. However, tetraploid plants on tetraploid roots, grown from seeds harvested from tetraploid induced plants, were inferior to triploid plants on triploid roots. Triploid plants were almost double in size (67% taller, had 109% wider canopy, and 90% larger DAB, n=8). This is the first time that this phenomenon has been documented in Samanea spp.
Speakers
AR

Alberto Ricordi

University of Hawaii at Manoa
Co-authors
KL

Kenneth Leonhardt

University of Hawaii at Manoa
NA
Tuesday September 24, 2024 1:50pm - 2:00pm HST
South Pacific 2
 
Wednesday, September 25
 

10:00am HST

Ornamentals Collaboration Session
Wednesday September 25, 2024 10:00am - 11:00am HST
A forum for discussion of potential collaborations with regards to ornamentals – i.e. floriculture, nursery crops, breeding, turf, ornamentals industry, botanic gardens, landscape industry, orchids, etc.
Wednesday September 25, 2024 10:00am - 11:00am HST
Coral 4

3:59pm HST

Ornamental Plant Breeding 2 (OPB 2)
Wednesday September 25, 2024 3:59pm - 5:00pm HST
QTL and Transcriptomic Analysis of Fragrance in the Auto-tetraploid Rose Population - Haramrit Gill
Assessing Micropropagation Traits in Anthurium Towards Breeding and Cultivar Development - Jaclyn Nicole Uy
Genotype Comparisons of Anthurium In Vitro Shoot Production in RITA® Bioreactors - Jacob Olarti
Treatment with Oryzalin Induces Chromosomal Changes in Salvia coccinea and Salvia splendens - John Ruter
Moderator
TA

Teresita Amore

University of Hawaii
Wednesday September 25, 2024 3:59pm - 5:00pm HST
South Pacific 2

4:00pm HST

OPB 2 - QTL and Transcriptomic Analysis of Fragrance in the Auto-tetraploid Rose Population
Wednesday September 25, 2024 4:00pm - 4:15pm HST
For centuries, roses have been treasured for their therapeutic, cosmetic, and ornamental qualities. Among its many qualities, flower fragrance holds significant economic value. Over 400 volatile compounds contribute to the complex aroma of roses, with terpenoids, phenylpropanoids, and benzenoids playing dominant roles. Among these, geraniol, a monoterpene, contributes notably to the signature scent of rose oil. However, the fragrance of modern roses has gradually diminished as breeders have focused on enhancing other traits like appearance, adaptation, durability, and vase life. To gain a better molecular understanding of specialized metabolic pathways related to floral scent in roses we carried out QTL studies in the SWxBE autotetraploid rose population [Rosa L. ‘ORAfantanov’ (Stormy Weather™) x Rosa L. ‘Radbrite’ (Brite Eyes™)]. Our study suggests that the QTL for the fragrance was identified on chromosome 2 which colocalized with the genes involved with fragrance such as ODO1, EOBIII, and NUDIX. Two rose genotypes from the SWxBE population, ‘16401-N055’ (slightly fragrant) and ‘16089-N051’ (highly fragrant), were used for transcriptomic analysis. Gene expression analysis suggests that the monoterpenoid pathway was highly active in the highly fragrant rose with the NUDIX gene being highly expressed. Thus, NUDIX, a gene involved in geraniol biosynthesis, is a strong candidate gene for the QTL on chromosome 2. This study lays the groundwork for further exploration of the molecular pathways responsible for the scent of roses.
Speakers
HG

Haramrit Gill

University of California, Davis
NA
Co-authors
DB

David Byrne

Texas A
NA
JL

Jeekin Lau

US Department of Agriculture
NA
Wednesday September 25, 2024 4:00pm - 4:15pm HST
South Pacific 2

4:15pm HST

OPB 2 - Assessing Micropropagation Traits in Anthurium Towards Breeding and Cultivar Development
Wednesday September 25, 2024 4:15pm - 4:30pm HST
The major bottleneck in anthurium cultivar release is the availability of microprogated plants for field testing. Genotype has been a major consideration for anthurium protocol development. Different genotypes vary in in vitro performance even when using optimized media, therefore assessing proliferative variation under in vitro conditions could help identify cultivars that could introgress tissue culture traits and provide guidelines for future protocol development. The objective of this study is to assess the in vitro performance of different anthurium accessions from the University of Hawaii anthurium breeding program under the RITA® temporary immersion system and to observe how lineage affects in vitro performance. To evaluate shoot initiation/proliferation, 20 accessions of anthurium (parents, interspecific hybrids, complex hybrids, and wild relatives) were placed in RITA® supplemented with a liquid medium containing 0.3X MS salts with 0.2 mg/L BA, 15% coconut water and 20 g/L sucrose. Primary shoots were excised after 45 days to allow axillary buds to develop into secondary shoots. Bud masses (trimmed explant bases) were placed on a solid medium containing ½ MS salts with 15% coconut water, 20 g/L sucrose and 2g/L gellan gum to observe shoot proliferation and growth. Parameters were analyzed using mixed models with time block as random effects and accessions as fixed effects. Previously identified check cultivars (‘Marian Seefurth’ and ‘New Pahoa Red’) were used as controls in this study. Significant differences among the genotypes were observed in terms of the number of primary shoots, the number of secondary shoots, total axillary bud mass volume (cm3), number of explants with shoot, and number of explants with roots. Three selections and an accession were identified to have potential use for breeding. UH2053, UH2409, UH2327 and ‘New Pahoa Red’ showed superior or comparable number of primary and secondary shoots, explant volume, and rooting compared to the check cultivars. These lines will be considered as parents in future crosses for cultivar development. Cluster analysis was also performed and was cross-referenced to existing pedigree and breeding records. Our analysis revealed five clusters which indicate that that parentage influenced in vitro shoot production particularly in lines with Anthurium andraeanum, A. amnicola, A. formosum and A. kamemotoanum in their background. Pedigree and breeding records are valuable resources for predicting response profiles of anthurium in vitro performance.
Speakers
JN

Jaclyn Nicole Uy

University of Hawaii
Co-authors
JO

Jacob Olarti

University of Hawaii
NA
TA

Teresita Amore

University of Hawaii
Wednesday September 25, 2024 4:15pm - 4:30pm HST
South Pacific 2

4:30pm HST

OPB 2 - Genotype Comparisons of Anthurium In Vitro Shoot Production in RITA® Bioreactors
Wednesday September 25, 2024 4:30pm - 4:45pm HST
Anthuriums are Hawaii’s top cut flower with its sales valued at USD1.6 M in 2022. It is an important floriculture crop as it is both used as cut flower and foliage. Development of new genotypes allows the growers in Hawaii to produce new cultivars desired by the market. The University of Hawaii anthurium breeding program has identified new selections to field test with commercial growers. In order to do so, the breeding program propagates these selections to send to growers. Recently the use of bioreactors, such as RITA® on ‘New Pahoa Red’, resulted in three times more shoot production than in traditional flasks placed on a platform shaker. Shoot and root production and axillary bud mass volume of three new selections, UH2647, UH2651, and UH2652, were compared against the control ‘New Pahoa Red’. Ten nodes of each genotype were placed in a RITA® bioreactor, and replicated five times in a completely randomized design. Nodes were cultured in liquid medium consisting of 0.3MS, 0.1 mg l-1 BA, 15% coconut water, 20 g l-1 sucrose, and 1 ml l-1 NaSiO3. The plants were cultured in the bioreactors for 1.5 months, and then removed to obtain the number of shoots, roots, and axillary bud mass volume. Primary shoots were excised and transferred to 0.3 MS, 15% coconut water, 20 g l-1 sucrose, and solidified with 6 g l-1 Gelzan® to promote axillary bud growth and shoot development. The pH for all media was adjusted to 5.8. One month later, shoots (~0.5 cm in height) were excised from the axillary bud masses. Shoot counts excised after initial culture in the liquid medium and after placement in the shoot development solid medium were analyzed using one-way ANOVA on R studio. Axillary bud mass volume and root number were analyzed. UH2647 significantly produced more shoots than UH2652 and ‘New Pahoa Red’, while UH2651 was not different from any genotype. UH2647 also had the highest average axillary bud mass volume. UH2651 and UH2652 produced significantly more roots than the control. Knowing the genotypic differences in shoot production will assist propagation facilities in developing guidelines to schedule production of individual genotypes.
Speakers
JO

Jacob Olarti

University of Hawaii
NA
Co-authors
JN

Jaclyn Nicole Uy

University of Hawaii at Manoa
TA

Teresita Amore

University of Hawaii
Wednesday September 25, 2024 4:30pm - 4:45pm HST
South Pacific 2

4:45pm HST

OPB 2 - Treatment with Oryzalin Induces Chromosomal Changes in Salvia coccinea and Salvia splendens
Wednesday September 25, 2024 4:45pm - 5:00pm HST
Salvia coccinea (diploid) and Salvia splendens (tetraploid) and their associated cultivars are widely available, commercially profitable, and environmentally supportive flowering annuals. In recent years, exciting cultivars have been successfully introduced. This investigation explores further development of S. coccinea ‘Summer Jewel Lavender’, S. coccinea ‘Hummingbird Forest Fire’, and S. splendens ‘Mojave Red and White Bicolor’ through treatments by oryzalin for the potential development of novel cultivars. Surflan™ or oryzalin (4-(dipropylamino)-3,5-dinitrobenzenesulfonamide) and the nonionic surfactant SilEnergy™ were applied as a foliar spray for one, two, three, and six days to induce changes in chromosome numbers. Data collected included morphological observations, measurements of foliage and flowers, flower numbers, and ploidy analysis via a CytoFLEX™ flow cytometer. Ploidy changes were achieved in seedlings across all the treatment groups. Novel traits were identified, ranging from smaller overall growth habits and foliage, larger and increased numbers of flowers, and new floral pigmentation while maintaining vigor and potential for container production. Optimization of treatments will be discussed. The findings of this research have practical implications for plant breeders, landscape designers and architects, horticulturists, and environmental researchers as the market continues to demand drought-tolerant, low-growing, long-flowering, and pollinator-attracting plants.
Speakers
JR

John Ruter

University of Georgia
Allan Armitage Endowed Professor of Horticulture and Director, Trial Gardens at UGA
Co-authors
Wednesday September 25, 2024 4:45pm - 5:00pm HST
South Pacific 2
 
Thursday, September 26
 

7:59am HST

Ornamental Plant Breeding 1 (OPB 1)
Thursday September 26, 2024 7:59am - 9:30am HST
The Boons of Breeding at a Botanic Garden - Justin Lombardoni
Mutagenesis of Hardy Hibiscus Using Ethyl Methanesulfonate - Greta Gallina
Genetic Sterilization of Four Invasive Ornamental Plant Species to Reduce Their Invasive Potential: Progress and Prospects - Zhanao Deng
Inheritance and Genetics of Ornamental Traits in Pomegranates - Alexander Schaller
Induction and Characterization of Mutations Related to Dwarf Habit in Hardy Hibiscus (Muenchhusia section) - Conner Austin
Compatibility of Cross-hybridizing Lagerstroemia taxa - Yongjun Yue


Moderator
JL

Justin Lombardoni

Chicago Botanic Garden
Thursday September 26, 2024 7:59am - 9:30am HST
South Pacific 4

8:00am HST

OPB 1 - The Boons of Breeding at a Botanic Garden
Thursday September 26, 2024 8:00am - 8:15am HST
While many institutions have staff that dabble in plant breeding, the Chicago Botanic Garden is one of the only gardens to administer a breeding program dedicated to introducing ornamental perennials. A botanic garden possesses a wealth of resources not available to hobbyist breeders and other companies, providing key advantages that aid in cultivar development. Among these resources are staff members that support plant breeding with different fields of expertise, such as horticulture, production, propagation, and landscape design. Other resources include well-maintained breeding beds and greenhouses for crossing plants and growing progenies as well as a plant exploration program that conducts both national and global plant collection trips. Various lab facilities are available through the science department, including equipment and staff that can help with seed cleaning and banking, pollen banking, flow cytometry, and more. Because the Chicago Botanic Garden and its plant introduction program Chicagoland Grows® are non-profits, there is more freedom to work on lesser known genera. This contrasts with traditional industry breeding, which often focuses on well-established genera when introducing new cultivars. Using Baptisia (false wild indigo) as an example, we’ll explore some past breeding conducted at the Chicago Botanic Garden by Dr. Jim Ault and how this breeding will continue moving forward. This will illustrate how ornamental cultivar development is possible without modern genotyping methods and high input costs.
Speakers
JL

Justin Lombardoni

Chicago Botanic Garden
Thursday September 26, 2024 8:00am - 8:15am HST
South Pacific 4

8:15am HST

OPB 1 - Mutagenesis of Hardy Hibiscus Using Ethyl Methanesulfonate
Thursday September 26, 2024 8:15am - 8:30am HST
Hardy hibiscus (Hibiscus moscheutos) are native herbaceous perennial plants. Due to their ornamental nature, variations in flowers, foliage, color, and variety are important. Mutagenesis is a method to increase variation in hibiscus plants, and ethyl methanesulfonate (EMS) is a common chemical mutagen that causes nucleotide substitutions. It converts guanine-cytosine pairs to adenine-thymine pairs. This study aimed to determine the EMS LD50 value for hardy hibiscus. The cultivar ‘Luna Red’ (Ball Horticulture) seed was used for treatment. An EMS LD50 determination study was performed using a factorial randomized complete block design. Three replications of 15 seeds were used for each treatment. EMS treatments consisted of 0, 0.25, 0.5, 0.75, and 1% EMS solution, each treated for 4, 8, and 12 hours to determine the ideal treatment concentration and time. The germination rate, survival rate, and height of seedlings were measured. The interaction effect for germination was insignificant when measuring concentration and time, so the LD50 values were identified for each time separately. The LD50 values for seedling survival were 0.64% EMS for 4 hours, 0.45% EMS for 8 hours, and 0.38% EMS for 12 hours. Notable phenotypic differences between the treated and control plants were observed. There was 92% greater two-month survival in the control plants compared to those treated with 0.75% EMS solution. The control plants were 90% taller at three months after treatment than the plants treated with 0.75% EMS solution.
Speakers
GG

Greta Gallina

University of Georgia
Co-authors
JR

John Ruter

University of Georgia
Allan Armitage Endowed Professor of Horticulture and Director, Trial Gardens at UGA
Thursday September 26, 2024 8:15am - 8:30am HST
South Pacific 4

8:30am HST

OPB 1 - Genetic Sterilization of Four Invasive Ornamental Plant Species to Reduce Their Invasive Potential: Progress and Prospects
Thursday September 26, 2024 8:30am - 8:45am HST
Invasive ornamental plants have been considered as a major contributor to the spread of invasive plant species in the United States and many other countries in the world. To mitigate the economic and ecological impacts of invasive ornamental plants, we have focused on genetic sterilization of four invasive ornamental plants that are commonly produced and widely used in Florida to develop sterile, triploid cultivars as alternatives to the invasive types. Toward this goal, we have made progress in (1) artificial induction of tetraploids in nandina, privet, and porterweed, 2) developing and releasing new sterile, non-invasive triploid lantana cultivars, 3) understanding the reproductive biology of lantana, 4) developing and applying new genomic and molecular tools, and 5) testing alternative breeding approaches. By applying the mitotic inhibitor agent colchicine to germinating seeds or seedlings, we have induced tetraploids in nandina, privet, and porterweed. Tetraploid nandina showed significantly reduction in pollen stainability and seed set. Tetraploid privet lines exhibited thicker leaves with darker green color. Induced tetraploid nandina, porterweed, and privet lines have come into flowering, and interploidy crosses are made to produce new triploids. Using existing tetraploids in lantana, we have generated hundreds of new triploids, evaluated their male and female sterility, and released five sterile, non-invasive triploid cultivars, three of which have become popular replacements of the invasive types. Ploidy and molecular marker analyses have revealed the production of unreduced female gametes and apomictic seeds in lantana and natural sexual polyploidization in lantana and several other lantana species. Genome and transcriptome analyses have uncovered candidate genes that are linked or directly involved in the production of unreduced female gametes in Lantana. A number of diploid and tetraploid lantana genotypes with male or female sterility have been identified, which are being used to generate new triploids through open pollination. Additional tools are needed to rescue triploid embryos and screen breeding populations for high female sterility. These new plant materials, genetic and genomic resources, and molecular tools are expected to facilitate the genetic sterilization of lantana, nandina, porterweed, and privet. The findings may guide similar genetic sterilization efforts in other invasive ornamental plants.
Speakers
ZD

Zhanao Deng

University of Florida
Co-authors
AS

Alexander Schaller

University of Florida
NA
BP

Brooks Parrish

University of Florida
MF

Mohammed Fetouh

Tanta University
NA
SW

sandra wilson

University of Florida
Dr. Sandra Wilson is a Professor of Environmental Horticulture at the University of Florida’s main campus in Gainesville. She received B.S. and M.S. degrees from the University of Delaware and a Ph.D. in Plant Physiology from Clemson University. Dr. Wilson completed postdoctoral... Read More →
Thursday September 26, 2024 8:30am - 8:45am HST
South Pacific 4

8:45am HST

OPB 1 - Inheritance and Genetics of Ornamental Traits in Pomegranates
Thursday September 26, 2024 8:45am - 9:00am HST
Pomegranates, renowned for their fruit, also possess ornamental varieties with unique traits such as double flowering, diverse flower colors, and dwarfing characteristics. Despite their appeal, limited information exists on the genetics and inheritance of these ornamental traits. In this study, we investigated the inheritance and genetic controls of these traits through crosses between the dwarfing cultivar Peppy Le Pom and pomegranate cultivars showcasing ornamental traits. By analyzing multiple families and conducting a genome-wide association study (GWAS) using resequencing data from 64 cultivars, we made several key findings. Firstly, the double flower trait exhibited Mendelian inheritance with a single locus controlling its expression, as evidenced by a 1:1 ratio of double to single flower plants in the F1 generation where a double flower individual was crossed onto a single flower individual. Subsequent analysis identified a SNP within an AP2-like gene on chromosome 3 that was able to differentiate between a single and double flower phenotype. Secondly, flower color inheritance revealed the recessive nature of white flowers compared to orange and red hues. SNPs near a PGLOX gene, previously linked to anthocyanin-less pomegranates, distinguished between white and red/orange flowers, suggesting specific genetic loci involved in determining flower color. Lastly, the dwarfing trait was identified as recessive, exhibiting phenotypic diversity among selfed F1 individuals, indicating potential multiple loci control. Further investigation into the genetic mechanisms governing dwarfing is warranted. In conclusion, our study contributes to understanding the genetic underpinnings of ornamental traits in pomegranates, offering insights valuable for breeding programs aimed at developing novel varieties with desirable ornamental characteristics. Further research into the identified genetic loci promises to enhance our understanding and facilitate targeted breeding efforts in this versatile fruit species.
Speakers
AS

Alexander Schaller

University of Florida
Co-authors
JC

John Chater

University of Florida
ZD

Zhanao Deng

University of Florida
Thursday September 26, 2024 8:45am - 9:00am HST
South Pacific 4

9:00am HST

OPB 1 - Induction and Characterization of Mutations Related to Dwarf Habit in Hardy Hibiscus (Muenchhusia section)
Thursday September 26, 2024 9:00am - 9:15am HST
Hybrids originating from different species within the Muenchhusia section of Hibiscus are well-received in commercial markets for their vibrant and abundant blossoms. However, many commercially available varieties prove overly robust for smaller garden spaces, often yielding a limited number of blooming flowers. The cultivation of stable, heritable mutants displaying a dwarf stature and improved branching architecture holds significant promise for enhancing the commercial production of resilient Hibiscus. The objective of this project was to induce point mutations in genes linked to the biosynthesis or signaling of plant growth-related hormones, using ethyl methanesulfonate (EMS). Successful induction of multiple mutations associated with dwarf, compact phenotypes was achieved. Hybridizations were carried out between M2 plants exhibiting a dwarf phenotype and hybrids generated through traditional breeding that lacked the dwarf mutation in their genetic background. This aimed to produce a diverse array of dwarf plant selections. The inheritance patterns of the dwarf genes were elucidated by analyzing the segregation ratios of the dwarf phenotype in the F1 and F2 generations of these hybrids. In comparison to non-dwarf progeny, dwarf progeny exhibited significantly shorter internode lengths and a greater number of primary branches.
Speakers
CA

Conner Austin

University of Florida
Thursday September 26, 2024 9:00am - 9:15am HST
South Pacific 4

9:15am HST

OPB 1 - Compatibility of Cross-hybridizing Lagerstroemia taxa
Thursday September 26, 2024 9:15am - 9:30am HST
Lagerstroemia indica L. is a favored landscape plant in mild-climate regions, cherished for its easy propagation and cultivation, prolonged blooming period, and variety of plant forms. The majority of new cultivars are the result of cross hybridization. However, compatibility issues arise with some cultivars and species. To enhance our understanding of the cross-compatibility of our elite cultivars, we selected four plants (C14-35, C14-39, D03-29, and D03-34) for reciprocal crosses and for crossing with other elite plants, chosen for their clean foliage and extended summer bloom periods. A total of 3126 crosses were made in the summer of 2023. By the season's end, 731 fruits were harvested to assess seed set, and viable seeds were counted in winter 2023. From these efforts, 20,862 seeds were harvested, with 5,470 identified as viable. Interspecific crosses with L. speciosa revealed that C14-35 and C14-39 had significantly better fruit set percentages (40% and 35.2%, respectively) compared to D03-29 and D03-34 (6.3% and 0%, respectively). Thus, C14-35 and C14-39 exhibit greater compatibility with L. speciosa. For reciprocal crosses, C14-39 and D03-34, when used as pollen donors, resulted in much lower fruit set percentages and seed sets than C14-35 and D03-29. Pollen studies of the four cultivars indicated that both C14-39 and D03-34 produced little to no pollen, while C14-35 and D03-29 were prolific pollen producers. Future cross hybridization studies will therefore avoid using C14-39 and D03-34 as pollen donors. A seed germination study is planned for spring 2024 to further assess the various cross combinations and confirm interspecific hybrids.
Speakers
YY

Yongjun Yue

University of Georgia
Co-authors
DZ

Donglin Zhang

University of Georgia
Thursday September 26, 2024 9:15am - 9:30am HST
South Pacific 4
 


Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
  • Career and Professional Development
  • Colloquium
  • Competitions
  • General - Registration/Speaker Center /etc.
  • Hort Theater & Collaboration Center
  • Interactive Workshop
  • Interest Group Session
  • Keynotes and Featured Sessions
  • Meals and Tours
  • Meetings - Committee/Division/interest Group
  • Oral presentation (Individual talk)
  • Oral Sessions
  • Poster presentation (individual talk)
  • Poster Session
  • Reception
  • Ticketed Events