Loading…
Oral presentation (Individual talk) clear filter
Wednesday, September 25
 

8:00am HST

FLOR 1 - Phosphate Solubilizing Bacteria: Leveraging The Soilless Substrate For Improved Phosphorus Nutrition In Controlled Environment Agriculture.
Wednesday September 25, 2024 8:00am - 8:15am HST
Phosphorus (P) is an essential macronutrient with low availability for plant uptake. The availability of P is reduced by the formation of insoluble complexes with calcium (Ca) and iron (Fe). Phosphorus solubilizing bacteria (PSB) can enhance P uptake by producing organic acids that acidify the rhizosphere and breakdown the insoluble P compounds. The goal of this research is to identify PSB that can increase P uptake efficiency in soilless production systems. A collection of bacteria isolated from the rhizosphere of greenhouse grown ornamentals was used to identify PSB using both in vitro and in planta evaluations. A malachite green assay optimized for 96-well plates was used to screen 1,056 bacterial isolates for the ability to solubilize phosphorus from both calcium phosphate and iron phosphate. This in vitro assay identified 14 and 24 PSB that solubilized 25% or more of the P from Ca2(PO4)3 and FePO4·2H20, respectively. There was no overlap between the PSB that solubilized Ca2(PO4)3 and those that solubilized FePO4. In planta evaluations were conducted in Marigold ‘Durango Yellow’ (Tagetes patula) and Tomato ‘Bush Beefsteak’ (Solanum lycopersicum) grown in a peat-based substrate (pH=7) and inoculated with individual PSB as a media drench (20 mL; OD595=0.1). Digital phenotyping with the TraitFinder (Phenospex) was used to quantify growth promotion (digital biomass and bloom area), and the severity of P deficiency symptoms [Green Leaf Index (GLI), normalized difference vegetation index (NDVI), Normalized Pigment Chlorophyll Ratio Index (NPCI), and Plant Senescence Reflectance Index (PSRI)]. Only seven FePO4·2H20 solubilizers (Fe-PSB) and six Ca2(PO4)3 solubilizers (Ca-PSB) performed better than the control in at least one of the evaluated parameters. A validation experiment was conducted to confirm the beneficial activity of the seven Fe-PSB (C2F9, C3A8, C11G1, C8D10, C6E7, C3G9, and C3F10) and the six Ca-PSB (C4A1, C2G6, B3A7, C11A5, C4B6, C12F4, and C6H6). The validation experiments were conducted with Marigold ‘Durango Yellow’ and Tomato ‘Early girl’ grown in a peat-based substrate (pH=7) and inoculated with individual PSB as a media drench (20 mL; OD595=0.1). Bacillus megaterium (C3F10), Pseudomonas sp. (C6E7), and two strains of Pantoea rwandensis (C3A8 and C8D10) showed a beneficial response when applied to plants fertilized with FePO4·2H20. Only, Enterobacter soli C4A1 showed a beneficial response when applied to plants fertilized with Ca2(PO4)3. The malachite-green assay and digital phenotyping are suitable tools for high-throughput identification of PSB that can be used to improve phosphorus nutrition in soilless culture systems.
Speakers
MJ

Michelle Jones

Professor, The Ohio State University
Co-authors
JQ

Juan Quijia Pillajo

The Ohio State University
LC

Laura Chapin

The Ohio State University
NA
SN

Sachin Naik

The Ohio State University
NA
Wednesday September 25, 2024 8:00am - 8:15am HST
Nautilus 1

8:15am HST

FLOR 1 - Phosphate Solubilizing Bacteria Isolated From Greenhouse Ornamentals Solubilize Phosphate In Vitro And Ameliorate P Deficiency Symptoms In Marigold ‘Durango Yellow’ Fertilized With Calcium Phosphate.
Wednesday September 25, 2024 8:15am - 8:30am HST
Phosphorus (P) is an essential macronutrient absorbed by plants as orthophosphate (PO4). P availability depends on the pH of the substrate. At high pH, P forms insoluble compounds like Ca3(PO4)2 which is unavailable for plant uptake. Phosphate solubilizing bacteria (PSB) are plant-associated microorganisms that can break down Ca3(PO4)2 by secreting organic acids. PSB have been primarily evaluated as inoculum for crops grown in soil to improve P availability. However, less is known about the application of PSB in ornamentals grown in soilless substrates. Our goal was to identify PSB from a collection of bacteria isolated from the rhizosphere of greenhouse ornamentals. First, the collection was screened in vitro for the bacterial capacity to reduce pH of the media using the bromophenol-blue color assay. Thirty-five isolates were identified to reduce media pH, and their P solubilization capacity was quantified using ion chromatography. Fourteen isolates with the highest P solubilization were selected for whole-genome sequencing, but only two bacterial isolates (C2B11 and C8D10) were advanced to the in-planta evaluation using Marigold (Tagetes patula) 'Durango Yellow' grown in a peat-based substrate (pH = 7). Plants were irrigated with 100 mg·L-1 N from a 15N-0P-15K fertilizer, and P was supplemented weekly as Ca3(PO4)2 via substrate drench applications. Lalrise Vita (Lallemand Plant Care) and Bacillus velezensis (the active ingredient in Lalrise Vita) were included as positive controls. Plant phenotyping was conducted using the TraitFinder automatic system (Phenospex). TraitFinder assessment parameters included digital biomass, bloom area, Green Leaf Index (GLI), Normalized Pigment Chlorophyll Ratio Index (NPCI), and Plant Senescence Reflectance Index (PSRI). Lalrise Vita performed better than the control in all the parameters evaluated. B. velezensis increased bloom area and showed higher GLI and lower NPCI than the control. Pantoea sp. C2B11 significantly increased digital biomass, bloom area, and GLI. Pantoea sp. C8D10 only showed an increase in GLI values. Both C2B11 and C8D10 possess various genes involved in gluconic acid production. We identified two PSB that solubilize P in vitro, promote growth and bloom area, and improve canopy health (high GLI or low NPCI) in marigold plants fertilized with Ca3(PO4)2. Our next step is to validate the growth-promoting capacity of the identified PSB in other ornamentals. PSB can contribute to improving phosphorus nutrition and fertilizer use efficiency in greenhouse ornamental production.
Speakers
JQ

Juan Quijia Pillajo

The Ohio State University
Co-authors
MJ

Michelle Jones

The Ohio State University
NN

Nathan Nordstedt

FMC Corporation
NA
Wednesday September 25, 2024 8:15am - 8:30am HST
Nautilus 1

8:30am HST

FLOR 1 - Activated Aluminum Amended Substrates Reduce Phosphorus Leaching in Floriculture Production
Wednesday September 25, 2024 8:30am - 8:45am HST
The use of water-soluble fertilizers in floricultural production provides readily available nutrients to sustain short-term crop production; however, nutrients such as phosphorus are poorly retained in typical peat substrates. Activated aluminum is an amendment that has demonstrated success in binding phosphorus within substrates, reducing the amount of phosphorus that is leached from the container. This research investigated the production of Tagetes in peat-based substrates amended with or without activated aluminum and provided four different phosphorus fertilizer regimens. The fertilizer regimens encompassed a nitrogen, phosphorus, and potassium liquid blend applied weekly; however, phosphorus was only included for 0, 2, 4, or 6 weeks in total over the duration of the study. Growth of Tagetes was effectively similar, and leachate analysis provided insights that can be applied towards more efficient production methods. In this research, utilizing activated aluminum resulted in less phosphorus loss in container leachate than unamended substrates. The potential to decrease applied phosphorus during floricultural production can similarly be achieved when using substrates amended with activated aluminum. This presentation will decipher the dynamics of the movement of phosphorus and other anions of interest that may be relevant to sustainable floriculture production.
Speakers
DA

Damon Abdi

Louisiana State University Agricultural Center
Co-authors
JF

Jeb Fields

LSU AgCenter Hammond Research Station
JB

Jeffrey Beasley

University of North Carolina - Pembroke
NA
Wednesday September 25, 2024 8:30am - 8:45am HST
Nautilus 1

8:45am HST

FLOR 1 - Iron-coated Sand as a Sustainable Substrate Amendment for Nutrient Management of Containerized Floriculture Crops
Wednesday September 25, 2024 8:45am - 9:00am HST
As natural resources dwindle, sustainable alternatives to current fertilization methods are essential for environmental and economic progress. Acid mine drainage (AMD) and phosphorus from fertilizer runoff are significant sources of water pollution in the Appalachian region of the United States. Horticultural producers are faced with rising prices of phosphate fertilizers, putting the industry in a tenuous position: reducing these costly inputs to minimize water pollution but, in turn, diminishing product quality. AMD-based iron-coated sand is a novel phosphate sorbent that can potentially ameliorate AMD and prevent further phosphate pollution. This technology can cut growers’ input costs and slow the consumption of finite phosphate resources. This study aimed to determine the viability of iron-coated sand as a substrate amendment for reducing phosphate leaching and enhancing growth, flowering, and phosphorus uptake of floriculture crops during and after production. The ideal sand-to-potting mix ratio was determined based on pansies, petunias, and chrysanthemums' growth, flowering, and leachate content. The rate of applied phosphate and P-saturation of sand were determined from growth, flowering, and leachate data of chrysanthemum during production. Finally, the effects of the coated sand were examined on petunia and chrysanthemum growth, flowering, mineral content, and leachate composition over time in production and post-production environments. Twenty percent P-saturated iron-coated sand with low to moderate rates of applied phosphorus reduces leached phosphate with no deleterious, and usually positive, effects on the performance of floriculture crops during and after production. Iron-coated sand as a substrate amendment in container production of ornamentals has tremendous potential for advancing environmental and economic sustainability in the horticultural industry.
Speakers
SM

Savannah Mead

West Virginia University
Co-authors
EP

Eugenia Pena Yewtukhiw

West Virginia University
NA
KB

Karen Buzby

West Virginia University
NA
LL

Lance Lin

West Virginia University
NA
NW

Nicole Waterland

West Virginia University
NA
Wednesday September 25, 2024 8:45am - 9:00am HST
Nautilus 1

9:00am HST

FLOR 1 - Phosphorous Restriction Suppresses Growth of Containerized Coneflower
Wednesday September 25, 2024 9:00am - 9:15am HST
Containerized coneflower (Echinacea sp.) production in greenhouses and nurseries often relies on commercial fertilizers, such as 20 nitrogen (N)–4.4 phosphorous (P)–16.6 potassium (K), applied at 100 to 200 mg·L−1 N; however, increasing N concentrations proportionately increase phosphorous pentoxide (P2O5) and thus, elemental P concentrations. As such, the recommended N fertilization supplies P concentrations of 21.8 to 43.6 mg·L−1 P, exceeding plant requirements and potentially leading to excessive stem elongation and P runoff, posing ecological risks. Therefore, the objective of this study was to evaluate the effects of P concentrations on the growth, ornamental value, and tissue mineral nutrient concentrations of coneflower (E. × hybrida Sombrero® Granada Gold ‘Balsomold’). A custom soilless substrate was formulated with (by vol.) 55% aged pine bark, 35% sphagnum peatmoss, and 10% perlite, and amended with 0.6 kg·m−3 wetting agent and 3.9 kg·m−3 dolomitic limestone to achieve a final pH of ≈5.6 to 5.8. Young plants of coneflower were individually transplanted into 16.5-cm-diameter (1.7 L) containers filled with the custom soilless substrate. Upon transplanting and throughout the experiment, plants were irrigated with nutrition solutions formulated from technical grade salts providing 0, 2.5, 5, 7.5, 10, 15, 20, or 30 mg·L–1 P. Plants were grown in a glass-glazed greenhouse at 20 °C under ambient daylight supplemented with a photosynthetic photo flux density of ≈120 µmol·m–2·s–1 delivered from light-emitting diode lamps from 0600 to 2200 hr (16-h photoperiod) to achieve a daily light integral of 14 mol·m–2·d–1. At anthesis (≈69 d after transplant), data were collected. In general, plant height, plant diameter, and shoot and root dry weights were significantly influenced by P concentrations, although to different magnitudes. Quadratic plateau models demonstrated plant height, plant diameter, and shoot dry weight were maximized at 52.7 cm, 36.5 cm, and 27.2 g, respectively, with P concentrations of 18.3, 15.9, and 23.4 mg·L−1 P, respectively. Root dry weight demonstrated a positive linear correlation with increasing P concentration where roots were 74% (3.3 g) larger at a P concentration of 30 than 0 mg·L−1 P. Concentrations of ≤ 7.5 mg·L−1 P resulted low (≤ 0.2% P) leaf tissue P concentrations and ≤ 2.5 mg·L−1 P resulted in low-quality plants with incipient symptoms of P deficiency. Collectively, these results indicate that a narrow range of P concentrations may be used to control coneflower growth and mitigate P pollution.
Speakers
avatar for Garrett Owen

Garrett Owen

Extension Specialist and Assistant Professor of Sustainable Greenhouse & Nursery Systems, The Ohio State University
Dr. W. Garrett Owen is Assistant Professor and Extension Specialist of Sustainable Greenhouse and Nursery Production Systems with primary responsibilities in teaching (20%), research (30%), and Extension (50%) in the Department of Horticulture and Crop Science at The Ohio State University... Read More →
Wednesday September 25, 2024 9:00am - 9:15am HST
Nautilus 1

9:15am HST

FLOR 1 - Investigating Synergistic Effects of Biostimulants and Biochar on Water Use Efficiency for Containerized Celosia (Argentea cristata) and Gomphrena (Gomphrena globose) Production
Wednesday September 25, 2024 9:15am - 9:30am HST
Given the escalating demands for water and the accompanying scarcity, enhancing water use efficiency (WUE) in horticultural practices has become imperative. Research has revealed that both biochar (BC) and seaweed extract biostimulants (BS) significantly enhanced WUE in plant growth, presenting promising avenues for sustainable agricultural advancement. This study aimed to investigate the synergistic effect of BC and BS on WUE for celosia (Argentea cristata) and gomphrena (Gomphrena globose) production. Three factors were included in this experiment including 1) mixed hardwood biochar blended with commerical substrate mixes (CS) at 0%, 10%, 15%, and 25% 2) 60% or 80% irrigation and 3) 0 or 5 mL BS(seaweed extract). The physical properties of substrate, including container capacity (CC), total porosity (TP), air space (AS), bulk density (BD), and water holding capacity (WHC), and chemical properties including leachate pH and electrical conductivity (EC) were measured. Plant growth parameters including growth index (GI) and leave greenness (indicated with SPAD value), biomass, and numbers of flowers were measured biweekly. Photosynthesis rate, transpiration rate, and stomatal conductance rate were measured at 6, 7, 8 WAT. The results showed that BC rates had significant effects on CC, and BD, but no effects on either TP, AS or WHC. Celosia plants grown in the 25% BC mix treated with 5mL BS at 80% irrigation had significantly higher biomass and WUE, and both plants in the same mix (25
Speakers
avatar for Lilin Chen

Lilin Chen

Graduate Research Assistant, University of Georgia
I'm interested in biochar effect on containerized plants, especially the effect under abiotic stresses such as drought and salinity.
Co-authors
PY

Ping Yu

University of Georgia
YC

Yulong Chen

The University of Georgia
Wednesday September 25, 2024 9:15am - 9:30am HST
Nautilus 1

9:30am HST

FLOR 1 - Effects of Reduced Water Usage During Production on Economic Value, Growth, And Quality of Flowering Indoor Plants
Wednesday September 25, 2024 9:30am - 9:45am HST
The objective of this study was to investigate the effects of soil moisture content during greenhouse production of selected floriculture crops. Over the course of several seasons, multiple flowering species were investigated, including Euphorbia milii, Cyclamen persicum, and Begonia x tuberhybrida. Plant quality characteristics were evaluated both during the production timeframe, and after a simulated shipping and retail setting. Treatments included two soil moisture content levels (20% and 40%), which was monitored by soil moisture probes. Production timelines varied, due to the differences in species. Once the predetermined production weeks were concluded the plant went into simulated shipping and retail environment. Qualities such as growth index (GI), leaf greenness (SPAD), Leaf thickness, petiole thickness, irrigation events, and irrigation amount were measured weekly. Flower number and foliage fresh /dry weights were gathered after the two week simulated retail period. Results varied depending on the species. In all species the 20% group had less watering events, which equates to producer savings in fertigation inputs as well as labor. All species had reduced canopy size in the 20% treatment, which could equate to bench space conservation. Some of the plant quality characteristics depending on the species had similar results after simulated retail. This equates to the idea that producers could reduce water application events and volumes and generate an equal quality plant compared to the traditional watering methods, while also saving on input and labor costs.
Speakers
KH

Kaitlin Hopkins

Sam Houston State University
Wednesday September 25, 2024 9:30am - 9:45am HST
Nautilus 1
 


Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
  • Career and Professional Development
  • Colloquium
  • Competitions
  • General - Registration/Speaker Center /etc.
  • Hort Theater & Collaboration Center
  • Interactive Workshop
  • Interest Group Session
  • Keynotes and Featured Sessions
  • Meals and Tours
  • Meetings - Committee/Division/interest Group
  • Oral presentation (Individual talk)
  • Oral Sessions
  • Poster presentation (individual talk)
  • Poster Session
  • Reception
  • Ticketed Events