Loading…
Oral presentation (Individual talk) clear filter
Wednesday, September 25
 

2:30pm HST

POM 2/HPRB/IPR - Do Plant “Growth Regulators” Really Regulate Growth? Plant Development And Plant Growth Are Not Synonymous.
Wednesday September 25, 2024 2:30pm - 2:45pm HST
Much scientific literature refers to plant development and growth as though they are synonymous. While plant physiology texts (E.g., Taiz et al. 2015) and horticulture texts (E.g., Sansavini et al. 2019) emphasize the roles of various plant hormones in coordinating plant development, they simultaneously refer to them as plant growth regulators. On the other hand, the same texts emphasize assimilation processes and the important role of carbohydrate and nutrient availability as well as water relations in enabling growth to occur. The terms growth and development are often used interchangeably and the literature rarely emphasizes the difference between plant development and plant growth. This causes confusion and a lack of clear thinking when attempting to develop explanations for plant growth responses in specific circumstances. Hormone physiologists often try to explain particular growth responses in terms of hormonal theory whereas environmental physiologists will likely explain the same responses in terms of environmental conditions and availability for the resources required for achieving growth. In this paper I will argue for a clearer differentiation between plant development and plant growth and suggest that plant hormones should not be thought of as plant growth regulators, but rather as plant development coordinators. Plant development coordinators (plant hormones) set up the conditions necessary for plant growth but availability of plant growth substances; carbohydrate and nutrient availability along with temperature and water relations, are often what actually regulate plant growth rates. Treating development and growth as separate but interdependent processes could clarify much understanding of the underlying processes involved in the regulation of plant growth. These concepts will be discussed in the context of understanding the mechanisms involved in several physiological phenomenon of fruit trees.
Speakers
TD

Ted DeJong

UC Davis
Wednesday September 25, 2024 2:30pm - 2:45pm HST
Nautilus 1

2:45pm HST

POM 2/HPRB/IPR - Using GDR to Enable Rosaceae Research - New Data, Functionality and Future Direction
Wednesday September 25, 2024 2:45pm - 3:00pm HST
Initiated in 2003, the Genome Database for Rosaceae (GDR, www.rosaceae.org) is a comprehensive community database that provides access to curated and integrated genomics, genetics, and breeding data for the biologically and economically important Rosaceae family. It serves as steward of critical research and breeding data, and provides access to online query and analysis tools that enable researchers to readily interrogate this wealth of data, facilitating basic and applied research across Rosaceae. This presentation will highlight the impact of GDR on Rosaceae research, demonstrate new data and tools, and share plans for future development and sustainability options.
Speakers
avatar for Dorrie Main

Dorrie Main

Professor, Washington State University
I am a member of the Pullman Charter School Initiative team and am particularly interested in how to set up and maintain a thriving Washington State Charter School to serve the needs of Eastern Washington students.
Wednesday September 25, 2024 2:45pm - 3:00pm HST
Nautilus 1

3:00pm HST

POM 2/HPRB/IPR - Deployment of Multi-location Genomic Prediction Models for Fruit Crops Using GDR-BIMS
Wednesday September 25, 2024 3:00pm - 3:15pm HST
Multi-location genomic prediction models have been proposed as a strategy for aggregating disconnected phenotypic datasets to enable performance prediction of individuals into new environments. This approach also offers improved prediction accuracy and understanding of environmental stability. Multi-location GBLUP prediction models have been developed and used to study patterns in genotype-by-environment interaction for: flowering date in cherry across four locations in USA, France, and Italy; for sweetness in peach across four locations in USA; in strawberry across eight locations in USA, Australia, and Europe; and for fruit firmness in apple across five locations in USA and Europe. Here we present an online bioinformatics platform for the deployment of these models via the Breeding Information Management System (BIMS) in the Genome Database for Rosaceae (GDR). This platform enables performance of new material that has not been physically tested to be predicted for the traits across the environmental space included in the multi-environment GBLUP models. The predicted genetic value of each individual included in the GBLUP models for each trait in each environment was used with the GBLUP individual-by-marker allele frequency matrix to predict the genetic effect of each marker allele for each trait in each environment. A portal was then developed on BIMS to host this vector of marker effects and enable new users to upload tables of new individual-by-SNP marker data for the loci used in the original GBLUP model. Predictions for the new individuals are produced by multiplying the new sample-by-marker frequency matrix by the vector of predicted allelic effects. Predictions of the new material for each trait across environments are delivered alongside predicted performance of publicly available genetic material to enable comparison and evaluation of reliability of predictions. The use of this portal is demonstrated with genome-wide SNP genotypic data collected on new apple selections evaluated for an Australian genetic improvement program.
Speakers
CH

Craig Hardner

University Of Queensland
Assocaite Professor in quantitative genetic s and tree breeding of horticultural and forestry crops with particular foci on multi-variate mixed linear models, G-by-E, genomic prediction, multi-trait selection, modelling breeding strategies, conservation genetics, low-cost genotyping... Read More →
Co-authors
CP

Cameron Peace

Washington State University
DM

Dorrie Main

Washington State University
SG

Shashi Goonetilleke

University Of Queensland
SJ

Sook Jung

Washington State University
NA
TL

Taein Lee

Washington State University
NA
Wednesday September 25, 2024 3:00pm - 3:15pm HST
Nautilus 1

3:15pm HST

POM 2/HPRB/IPR - Raspberry Cultivar Evaluation Trial in Mississippi
Wednesday September 25, 2024 3:15pm - 3:30pm HST
Many states in the US produce raspberries, however, most of the production is concentrated in three states: California, Oregon and Washington as most raspberry cultivars grow best in regions with cool summers and mild winters. However, newer raspberry cultivars have been developed exhibiting heat tolerance. Cultivars with heat tolerance provide an opportunity for the growers in the Southern states to include raspberries in their crop production. Local Mississippi growers are interested in incorporating raspberries into their productions. However, there lacks research-based recommendations on raspberry cultivars suitable for Mississippi's climate. The objective of this study was to evaluate raspberry cultivars in terms of plant growth, heat and cold tolerance, pest and disease resistance, berry yield, quality, and fruiting season to identify the best-suited cultivars for Mississippi. This experiment was conducted in a randomized complete block design with two types of fertilizer: conventional and organic. Data collection included measurements of plant growth and performance, berry yield and quality and fruiting season. The results showed that raspberry yield, single berry weight and fruit size were influenced by fertilizer treatment. The soluble solid contents, acidity, and fruit color were not influenced by fertilizer treatment. Raspberry yield was higher for “Polka”, “Encore”, “Heritage”, and “Latham” under conventional fertilizer. Cultivars “Himbo”, “Prelude”, ‘Bp1”, and “Encore” treated with conventional fertilizer had higher single berry weight. The average fruit size of cultivars “Prelude”, “Himbo”, “Encore”, “Bp1” treated with conventional fertilizer produced larger fruits in comparison to the other cultivars. The fruit's soluble solid content was highest in “Heritage”, indicating a sweeter taste. Cultivars “Polana” and “Anne” produced fruits with the highest acidity, indicating a tarter taste compared to other cultivars. Fruit color varied between cultivars, with differences in lightness, redness, and yellow coloration.
Speakers
avatar for Apphia Santy

Apphia Santy

Graduate Student, Mississippi State University
Hello! I'm passionate about the world of horticulture and am eager to explore and discuss various opportunities within the industry. I am particularly interested in pursuing a PhD in horticulture, with a specialization in either specialty crops or ornamentals. Additionally, I have... Read More →
Co-authors
GB

Guihong Bi

Mississippi State University
NA
TL

Tongyin Li

Mississippi State University
NA
Wednesday September 25, 2024 3:15pm - 3:30pm HST
Nautilus 1

3:30pm HST

POM 2/HPRB/IPR - Performance of AU Gold-fleshed Kiwifruit in Alabama
Wednesday September 25, 2024 3:30pm - 3:45pm HST
The performance of kiwifruit, primarily gold-fleshed cultivars, has been evaluated for many years in central Alabama, with the earliest plantings occurring at the Chilton Research and Extension Center, Clanton, AL in the mid-1990s. The objective of this study was to determine bloom times of female and potential male pollinizers, appropriate harvest times, and fruit quality attributes of ‘AU Golden Dragon’, ‘AU Gulf Coast Gold’, and ‘AU Golden Sunshine’. The female cultivar ‘AU Golden Dragon’ blooms earlier than other cultivars evaluated and had good bloom overlap with the male cultivar Hortkiwi ‘Meteor’. The female cultivars ‘AU Golden Sunshine’ and ‘AU Gulf Coast Gold’ bloom approximately 2 weeks after ‘AU Golden Dragon’ and had good bloom overlap with the male ‘AU Golden Tiger’. The harvest period in central AL for each cultivar based on flesh color (hue
Speakers
JS

James Spiers

Auburn University
Wednesday September 25, 2024 3:30pm - 3:45pm HST
Nautilus 1

3:45pm HST

POM 2/HPRB/IPR - Evaluating Sufficiency Levels and Peach Leaf Analysis for Fertilizer Decision-Making
Wednesday September 25, 2024 3:45pm - 4:00pm HST
The increasing demand for tree fruit production necessitates optimizing nutrient balance in intensified orchard systems to maximize profits efficiently. While peach growers are advised to follow Extension and recommended guidelines for fertilization, such recommendations may not align with orchard-specific variables and environmental conditions. As a consequence, crop sufficiency ranges may require updating to reflect modern growing practices and environmental factors. Although leaf nutrient analysis is the most reliable method for diagnosing tree nutritional status, the prevalence of annual fertilizer application, driven by the low cost of fertilizers relative to crop value, often leads to excessive fertilization in peach orchards. Consequently, our objective was to evaluate established sufficiency levels and leaf analysis as tools for determining the need for annual fertilizer applications. To achieve this, we implemented a two-year study involving two fertilization programs in an orchard with three rows of 17 peach trees: two rows adhered to grower standard, annual fertilization, while the remaining row followed a rational fertilization program. The latter implied applying fertilizer only when leaf analyses indicated nutrient concentrations below established sufficiency thresholds for peaches. Leaf analyses were conducted annually in July, and if nutrient concentrations were within or exceeded sufficiency thresholds, no fertilizer was applied postharvest or the following spring. If nutrient concentrations fell below sufficiency thresholds associated with a significant difference in yield and fruit quality between the two programs, fertilization occurred in late summer and during bloom time the following spring. We assessed tree quality and productivity by measuring yield (total weight of all the fruit per tree) and fruit quality (size and brix) annually. The results of the first year showed that despite deficient leaf nitrogen and phosphorus concentrations and other nutrients such as potassium, calcium, and magnesium remaining within or above their sufficiency ranges, we observed no significant differences in yield or fruit quality between trees subjected to rational and standard fertilization practices. Consequently, fertilization for the upcoming year was deemed unnecessary in trees following the rational program. The outcomes of this study are expected to guide peach growers in making informed decisions based on updated data, reducing the environmental impact of overfertilization, which is inefficient for fruit production and uneconomical, and enhancing farm profitability.
Speakers
avatar for Richardson Bien Aime

Richardson Bien Aime

Graduate student, Clemson University
- Plant and environmental sciences- Horticulture- Optimization of Peach Fertilization- Peach rootstocks- Agricultural economics- Sports- Music
Co-authors
JC

Juan Carlos Melgar

Clemson University
NA
Wednesday September 25, 2024 3:45pm - 4:00pm HST
Nautilus 1

4:00pm HST

POM 2/HPRB/IPR - Common Mechanisms Controlling Fruit Shapes may be Mediated by Changes in Cell Wall Properties
Wednesday September 25, 2024 4:00pm - 4:15pm HST
Fruit shape variation is abundantly present in horticultural crops. This variation is critical to highlight the market class as well as the culinary purpose of the produce. Many of the underlying genes have been cloned in tomato, offering insights into the molecular mechanisms of morphological diversity. Specifically, members of the OFP, TRM and SUN family regulate produce shape variation in tomato and other crops, thereby highlighting the importance of these three families in regulating phenotypic diversity. Despite the knowledge of the genes, mechanistic insights into the function of members of these three gene families are lacking. Our research on the tomato genes OVATE and OFP20 has shown that changes in produce shapes are noticeable early in the development of the flower. Cell counts in ovaries at anthesis implied that changes in cell division patterning may underlie morphological diversity. However, gene expression studies showed that morphological changes were associated with cell wall processes and not with changes in cell division patterning.
Speakers
EV

Esther van der Knaap

University of Georgia
Co-authors
YW

Yanbing Wang

University of Georgia
NA
Wednesday September 25, 2024 4:00pm - 4:15pm HST
Nautilus 1
 


Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
  • Career and Professional Development
  • Colloquium
  • Competitions
  • General - Registration/Speaker Center /etc.
  • Hort Theater & Collaboration Center
  • Interactive Workshop
  • Interest Group Session
  • Keynotes and Featured Sessions
  • Meals and Tours
  • Meetings - Committee/Division/interest Group
  • Oral presentation (Individual talk)
  • Oral Sessions
  • Poster presentation (individual talk)
  • Poster Session
  • Reception
  • Ticketed Events