Loading…
Oral presentation (Individual talk) clear filter
Friday, September 27
 

2:15pm HST

O/LT 3 - Seedling Zoysiagrass Response to Fluazifop-butyl and Trifloxysulfuron-methyl With the Safener Metcamifen
Friday September 27, 2024 2:15pm - 2:30pm HST
Managing grassy weeds in turfgrass can be challenging. In 2023 a new formulation of trifloxysulfuron-methyl containing the safener metcamifen, Recognition® Herbicide, was commercially available for use in established zoysiagrass. When applied as a mixture, this product safens zoysiagrass from the effects of the graminicide fluazifop-butyl (Fusilade® II Herbicide), allowing for higher application rates of fluazifop-butyl to manage difficult to control grass weeds such as bermudagrass. Previous research has demonstrated acceptable response following this herbicide mixture when applied to established zoysiagrass, however no information is available evaluating seedling zoysiagrass response to these herbicides. Experiments were conducted at the Milo J. Schult Agricultural Research and Extension Center in Fayetteville, AR and the Southwest Research and Extension Center in Hope, AR in 2023 to evaluate seedling zoysiagrass injury from applications of fluazifop-butyl and trifloxysulfuron-methyl with metcamifen applied at two different rates. “Zenith” zoysiagrass was seeded in June and August in Fayetteville and Hope, respectively, with herbicide applications made 2-and 4-weeks after emergence. Similar response was observed from both 2- and 4- week after emergence herbicide application timings. When applied as a mixture to seedling zoysiagrass, treatments of fluazifop-butyl plus trifloxysulfuron-methyl with metcamifen resulted in a maximum of 20% visual injury 1-week after treatment. However, seedling recovery was observed at subsequent ratings with
Speakers
HW

Hannah Wright-Smith

Extension Weed Specialist, University of Arkansas
Co-authors
DN

David Nistler

University of Arkansas
NA
JM

John McCalla

University of Arkansas
NA
LT

Lane Tredway

Syngenta
NA
MD

Michael D Richardson

University of Arkansas
NA
Friday September 27, 2024 2:15pm - 2:30pm HST
South Pacific 2

2:30pm HST

O/LT 3 - Influence of Demethylation Inhibiting Fungicides on Creeping Bentgrass Putting Greens
Friday September 27, 2024 2:30pm - 2:45pm HST
Demethylation inhibiting (DMI) fungicides are frequently applied to turfgrasses for suppression of many common fungal diseases in turfgrass. However, certain DMI fungicides cause phytotoxic effects to turfgrasses, particularly creeping bentgrass (Agrostis stolonifera L.), during the heat of the summer. A study was conducted in Fayetteville, AR in the summer of 2023 to determine the effects of nine DMI fungicides (flutriafol, mefentrifluconazole, metconazole, myclobutanil, propiconazole, prothioconazole, tebuconazole, triadimefon, and triticonazole) compared to a nontreated control on a ‘Pure Eclipse’ creeping bentgrass putting green. All treatments were applied a total of six times at the highest labeled rate at biweekly intervals beginning on 23 Jun 2023 and ending on 1 Sep 2023. A CO2-pressurized backpack sprayer was used to deliver the treatments in a carrier volume of 814 L ha-1. Plots were assessed weekly for percent phytotoxicity (0-100%). Additionally, beginning on 27 Jul 2023, clippings were collected, dried, and weighed weekly until 24 Aug 2023. Data were averaged across all rating dates, subjected to analysis of variance, and means were separated using a Student’s t-test (p < 0.05). Propiconazole caused ≥ 36.7% more phytotoxicity than any other treatment. The only other fungicide treatments that caused greater phytotoxicity than the nontreated control were myclobutanil and triadimefon. Myclobutanil, propiconazole, and triadimefon were also the only treatments to increase clipping weights compared to the nontreated control. These data suggest that many DMI fungicides do not cause phytotoxic effects on creeping bentgrass putting greens during the summer with the exception of myclobutanil, propiconazole, and triadimefon.
Speakers
WH

Wendell Hutchens

Assistant Professor of Turfgrass Science, University of Arkansas
Wendell Hutchens, PhD is an assistant professor of turfgrass science in the Horticulture Department at the University of Arkansas. His main areas of expertise are turfgrass pathology and precision management of turfgrass pests using emerging technologies. His research program is centered... Read More →
Co-authors
JA

Jessica Anders

University of Arkansas
NA
KG

Koa Grabar

University of Hawaii at Manoa
NA
MB

Michael Battaglia

University of Arkansas
NA
Friday September 27, 2024 2:30pm - 2:45pm HST
South Pacific 2

2:45pm HST

O/LT 3 - Endophytic N Fixing Bacteria Isolated From Warm-season Turfgrasses and Common Lawn Weeds
Friday September 27, 2024 2:45pm - 3:00pm HST
The turfgrass industry has attempted to adopt market available N fixing bacterial strains to supply exogenous N requirements. However, turfgrass inoculations with market available N fixing strains have led to inconclusive results. Research on naturally occurring N fixers has mainly focused on abundance and diversity on roots and below ground soil. These ecological niches are known to be impacted by regular management practices of turfgrass which also interfere with the colonization rates of microorganisms. Therefore, the use of endophytic N fixing bacteria which are naturally present in turfgrasses such as bermudagrass, creeping bentgrass, and tall fescue is an attractive alternative regarding a higher microbial stability and potential of colonization. In this study we evaluated the culturing potential of N fixing bacteria from three turfgrass and three common weed species, assayed their potential to grow under different ammonium chloride (NH4Cl ) concentrations, and compared the isolates with the dominant taxa from a previous study in the community composition of N fixing bacteria in ‘CitrablueTM’ St. Augustinegrass [Stenotaphrum secundatum (Waltz)]. The plant biomass was collected from ‘CitrablueTM’, ‘Celebration’ bermudagrass [Cynodon. dactylon (L.)], ‘Empire’ zoysiagrass [Zoysia japonica (Steud)], goosegrass [Eleusine indica (L.) Gaertn], crabgrass [Digitaria sanguinalis (L.) Scoop], and bull paspalum [Paspalum setaceum (Michaux)]. The biomass was washed with water and surface sterilized using consecutive immersions in ethanol 75%, bleach 50%, and three rinses with ultrapure water. After sterilization, N fixers were isolated using a N free enrichment technique with Carbon Combined Media (CCM) and streaking on CCM solid plates. Taxonomy of the isolates was assigned using 16S and nifH Illumina miseq sequencing, consequently, the isolates were grown in liquid CCM with NH4Cl concentrations ranging from 100 uM to 0.001 uM. The isolates, Sphingomonas trueperi, Kosakonia radicitans, Herbaspirillum rubrisulbicans, Agrobacterium salinotolerans, Stenotrophomonas maltophilia, Kosakonia oryzae, Enterobacter sp. were not able to grow below 1 uM of NH4Cl in liquid CCM, however, these strains were the best performing strains because were able to grow at lower NH4Cl concentrations. Lastly, the isolates were not genotype specific to either turfgrasses or weeds and were not correlated with the dominant taxa of N fixers on the ‘CitrablueTM’ study.
Speakers
AF

Andrea F Arevalo Alvarenga

Graduate Assistant, University of Florida
Co-authors
MS

Marco Schiavon

University of Florida
US

Ulrich Stingl

University of Florida
NA
Friday September 27, 2024 2:45pm - 3:00pm HST
South Pacific 2

3:00pm HST

O/LT 3 - Mowing Mediated Root Radial Transport of Lead in Cynodon dactylon (L.) Persoon
Friday September 27, 2024 3:00pm - 3:15pm HST
Moderate mowing has been demonstrated as an effective strategy for aiding soil Pb remediation using bermudagrass. However, the precise mechanisms by which mowing facilitates the absorption and transport of Pb in bermudagrass remain unclear. Radial transport of Pb in roots governs the amount of Pb loaded into xylem vessels, where Pb ions are translocated upward into shoots. This study aims to investigate the radial transport pathways and their characteristics of Pb in bermudagrass under Pb and mowing treatments to elucidate the underlying mechanisms. The results indicate a shift in Pb distribution within the bermudagrass roots under mowing treatments. Specifically, there was a decrease in Pb distribution in the root apoplast accompanied by an increase in the root symplast. Under mowing conditions, the synthesis of abscisic acid and jasmonic acid in roots was significantly induced, leading to a delayed development and deposition of the endodermal barriers (Casparian strips and suberin lamellae). This reduction in the contribution rate of the apoplastic bypass inhibited Pb from entering the stele via the apoplastic pathway. Conversely, mowing pretreatment inhibited Pb absorption in roots but promoted Pb absorption in shoots under treatments with metabolic and ion channel inhibitors. Additionally, Pb2 net influx in the root apex was remarkably enhanced, and the expression of Pb absorption- and transport-related genes (CdNramp5 and CdHMA2) were upregulated following mowing application, suggesting that mowing promoted Pb transport through the symplastic pathway. Overall, this study provides the first evidence that mowing mediates the radial transport of Pb in bermudagrass. Mowing enhances the absorption and root-to-shoot transport of Pb primarily by increasing the efficiency of the symplasmic pathway.
Speakers
XC

Xinyi Cai

University of Georgia
Co-authors
DZ

Donglin Zhang

University of Georgia
XL

Xi Li

Sichuan Agricultural University
NA
Friday September 27, 2024 3:00pm - 3:15pm HST
South Pacific 2

3:15pm HST

O/LT 3 - Cool-season Turfgrass Biomass and Ecosystem CO2 Flux as Affected by Fertilization and Irrigation
Friday September 27, 2024 3:15pm - 3:30pm HST
Concerns about the environmental impacts of lawns, including a high climate footprint, can pose challenges to the acceptance of natural turfgrasses. There are limited assessments of how to enhance turfgrass carbon sequestration and reduce management inputs in turfgrass systems in the northwest U.S. The goal of this study was to evaluate how fertilization and irrigation management can affect the ability of mixed cool-season turfgrass stands to sequester carbon. Annual rates of 0 and 196 kg N ha−1 were evaluated in the fertilization trial, while a non-irrigated control and 0.6 cm of precipitation applied four times per week in the summer months were compared in the irrigation trial. A portable clear chamber with a CO2 gas analyzer was used to measure CO2 fluxes. Grass clippings were collected from each plot to measure dry weight and subsequently returned to their respective plots. Clipping data were summarized as annual clipping production rates. Turfgrass standing biomass was sampled in 2021 and 2022 after summer stress and separated into aboveground (verdure) and belowground (thatch and roots) biomass. Our results indicated that the annual fertilization rate of 196 N ha−1 significantly increased photosynthesis in cool-season turfgrass in the winter and early spring compared to the unfertilized control. Fertilization also increased the net ecosystem exchange (NEE) rate in the winter, but the increases in NEE were less frequently observed than in the photosynthetic rate. Moreover, higher respiration rates were occasionally observed with the fertilization treatment. In contrast, fertilization had little to no effect on NEE, photosynthesis, and ecosystem respiration rates during the summer. Fertilization resulted in higher annual clipping yield, whereas there were no statistical differences between fertilization and no fertilization treatments in above- or below-ground biomass. In the irrigation study, the growth of turfgrass without irrigation ceased during summer as evidenced by reduced photosynthetic rates that were close to 0. Summer irrigation also stimulated ecosystem respiration which offset the benefits of enhanced photosynthetic rates, suggesting that further research is needed to identify the optimum irrigation practice for enhancing net CO2 assimilation. Irrigation produced greater annual clipping production in 2021 but had no effect in 2022. Irrigation was also shown to significantly increase aboveground biomass, but belowground biomass was not affected by irrigation. These results provided a better understanding of cool-season turfgrass growth in the Pacific Northwest U.S. so that cultural practices can be refined for more climate-friendly turfgrass management.
Speakers
RW

Ruying Wang

Oregon State University
Co-authors
AK

Alec Kowalewski

Oregon State University
NA
CM

Clint Mattox

USDA-ARS
NA
EB

Emily Braithwaite

Oregon State University
NA
ZH

Zachary Hamilton

Oregon State University
NA
Friday September 27, 2024 3:15pm - 3:30pm HST
South Pacific 2
 


Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
  • Career and Professional Development
  • Colloquium
  • Competitions
  • General - Registration/Speaker Center /etc.
  • Hort Theater & Collaboration Center
  • Interactive Workshop
  • Interest Group Session
  • Keynotes and Featured Sessions
  • Meals and Tours
  • Meetings - Committee/Division/interest Group
  • Oral presentation (Individual talk)
  • Oral Sessions
  • Poster presentation (individual talk)
  • Poster Session
  • Reception
  • Ticketed Events