Loading…
Poster presentation (individual talk) clear filter
Thursday, September 26
 

12:15pm HST

PH 2 - Non-invasive Assessment of Haskap Growth (Lonicera caerulea) Utilizing X-ray Computed Tomography and Image Processing
Thursday September 26, 2024 12:15pm - 12:25pm HST
The latest advances in technology have made it easier to accurately assess the quality of fresh produce, reducing the amount of physical handling required. Computed tomography (CT) is a non-intrusive method that can effectively monitor and categorize fresh produce at different stages of development and maturity. Implementing novel CT scanning techniques can provide innovative means for classifying fresh produce in the early stages of development. The present work provides information for the calculation of the volume and the porosity of the haskap during its ontology. Samples of haskap were taken at four stages of growth prior to harvest and at the time of harvest. Image data were acquired using X-ray microcomputed tomography (SkyScan 1272, Bruker, Billerica, MA, USA) at a resolution of 19.69 μm per pixel, operating at 60 kV and 166 μA, using a 0.25 mm aluminum filter. The resultant data was exported to the BMP file format. BMP files were then processed using Avizo 3.0 (Thermo Fisher Scientific, Waltham, Massachusetts, USA). Automated thresholding using factorization in criteria was applied to the 8-bit images. Subsequently, the images were labeled and an axis connectivity of 26 neighborhoods was established. Finally, a measurement was derived using the volume fraction tool. The results showed that the porosity at stage 3 was 26.56%. It then decreased to 7.52% in the 4th stage and reached a peak of 13.45% during the harvesting stage. These results may have implications for commercial cultivation strategies and optimization of pre- and post-harvest practices and add to the existing understanding of Haskap growth and development.
Speakers
DA

Duarte-Sierra Arturo

Université Laval
Co-authors
CG

Charles Goulet

Université Laval
NA
EA

Ernesto Alonso Lagarda Clark

Université Laval
NA
Thursday September 26, 2024 12:15pm - 12:25pm HST
South Pacific 3

12:25pm HST

PH 2 - Vase Life Prediction for Cut Roses Using Deep Learning and Hyperspectral Imaging Techniques
Thursday September 26, 2024 12:25pm - 12:35pm HST
Japan is a major export market for the Korean cut rose flower industry. The longevity of cut roses significantly influences consumer purchasing decisions, prompting Japan to establish a quality guarantee system to ensure cut flower longevity. However, existing longevity guarantee methods rely heavily on subjective evaluations, overlooking critical factors such as senescence characteristics and disease infections. Hyperspectral imaging (HSI) technique is used for quality control of many fruits and can be performed at video rates, and could thus provide accurate data on aspects of cut flower quality. The You Only Look Once version 8 (YOLOv8) and Random Forest models for object detection and classification enable consistent quality assessment and swift longevity prediction. In this study, we developed a non-contact and rapid detection technique for the potential longevity of cut roses using deep learning techniques based on HSI data. Cut ‘Unforgettable’, ‘Egg Tart’, and ‘Catalina’ rose flowers were held in wet conditions during the exportation to Japan. HSI data within the visible near-infrared range 450-900 nm wavelengths were obtained for analysis of the disease infection and quality of cut roses. Image data of diseased cut roses were collected and corresponding data processing was carried out to build diseased cut roses and quality detection dataset. We developed the longevity prediction model based on scoring a grading standard on the flower quality and this model was then used to predict the longevity and evaluate quality changes of cut roses after exporting to Japan. The results showed that the longevity of exported cut roses was 8 d (‘Egg Tart’), 5.9 d (‘Catalina’), and 4.9 d (‘Unforgettable’). The longevity of cut roses was primarily terminated by gray mold disease (‘Unforgettable’ and ‘Catalina’), petal wilting and discoloration (‘Egg Tart’ and ‘Catalina’), and petal abscission (‘Catalina’). The predictive accuracy of the three rose flowers longevity prediction model was three rose flowers ‘Egg Tart’ (r2=0.80), ‘Unforgettable’ (r2=0.78), and ‘Catalina’ (r2=0.65). These results demonstrate that the combination of HSI and deep learning is a reliable method for evaluating the longevity of exported cut roses.
Speakers
YK

yongtae kim

Andong National University
Co-authors
BI

ByungChnu In

Andong National University
NA
JY

Ji Yeong Ham

Andong National University
ST

Suong Tuyet Yhi Ha

Andong National University
NA
Thursday September 26, 2024 12:25pm - 12:35pm HST
South Pacific 3

12:35pm HST

PH 2 - Extending the Postharvest Storage of Caladium Tubers to Unlock Late-Season Pot Plant Production Potential in Florida
Thursday September 26, 2024 12:35pm - 12:45pm HST
Florida is home to the largest caladium production in the world, supplying essentially all the global caladium tuber demand. These plants are famous for their vibrant leaf colors and patterns and are asexually propagated through tubers. Following plant development, tubers are harvested and stored for a few months before being forced from March to September for potted plant production and direct landscape planting. During extended postharvest storage, caladium tubers face the risk of severe weight loss, tissue decay, and Fusarium tuber rot. The current practice of storage under ambient conditions with high temperatures and high relative humidity exacerbates weight loss and tuber rot. The challenges of long-term tuber storage make it difficult to produce pot caladium plants for winter holidays, including Thanksgiving, Christmas, and New Year. These challenges also affect the commercialization of tubers in the Southern Hemisphere during the summer. Opening these marketing opportunities can allow growers to extend and increase their production. Additionally, the identification of caladium tubers suitable for late-season production will give Florida growers a competitive advantage. To identify caladium varieties with long-term tuber storage potential and late-season production, 12 varieties were evaluated to target Thanksgiving and Valentine’s Day. No.1-sized tubers were potted in 5-inch containers and grown in a greenhouse. For each variety, 10 tubers were monitored for sprouting and leaf expansion and later evaluated for plant quality using a rating scale from 1 to 5. Eight cultivars were identified as suitable to grow for Thanksgiving, whereas 3 were identified for Valentine’s Day based on long-term storage potential and plant performance. Identification of cultivars will allow growers to expand their commercialization window not only for major holidays but also to supply tuber demand to the Southern Hemisphere.
Speakers
GC

Gasselle Cordova

University of Florida
Co-authors
SS

Steven Sargent

University of Florida
Professor and Extension Postharvest Specialist
ZD

Zhanao Deng

University of Florida
Thursday September 26, 2024 12:35pm - 12:45pm HST
South Pacific 3

12:45pm HST

PH 2 - Analysis of Oxidative Decreases in Hop (Humulus lupulus L.) Bitter Acids Produced Postharvest
Thursday September 26, 2024 12:45pm - 12:55pm HST
Nearing maturity, female hop plants develop inflorescences called hop cones. Inside of a mature hop cone is the lupulin gland where glandular trichomes are present. Within the lupulin gland, the glandular trichomes secrete alpha acids (α), and beta acids (β). Hop bitter acids are extremely sensitive to photolysis and oxidation reactions causing the degradation of α-acids and β-acids which negatively affect their use in beer, and the beer brewing industry accounts for 98% of world use of hops (Fandino et al., 2015). Determining hop storage index (HSI) is a way to measure the amount of α and β-acids lost during postharvest handling. HSI is a ratio determined by measuring the spectrophotometric UV absorption of hop extract at 275nm for oxidative compounds, and 325nm for bitter acids. Bitter acids and any oxidative decreases were determined in eight cultivars of hops (‘Cascade’, ‘Chinook’, ‘Comet’, ‘Mount Rainier’, ‘Newport’, ‘Tahoma’, ‘Willamette’, ‘Zeus’) produced at the Cimarron Valley Research Station in Perkins, Oklahoma. Mature hop cones were hand harvested at 80% moisture and dried at ambient temperature to 8-10% moisture using a centrifugal fan. Hops were stored no longer than six months frozen under nitrogen in vacuum sealed bags until analysis. Hop bitter acids were extracted using toluene and UV absorbance was measured at 355, 325, and 275nm using a spectrophotometer. Based on the HSI, hops were assigned a quality score of good (0.4). Seven of the eight cultivars of hops were of good quality (‘Cascade’, 0.20; ‘Chinook’, 0.19; ‘Comet’, 0.17; ‘Mount Rainier’, 0.12; ‘Newport’, 0.23; ‘Tahoma’, 0.18; ‘Willamette’, 0.22). ‘Zeus’ hops were of questionable quality (0.31) but contained a slightly higher moisture content at storage (11%) than the other cultivars (7-10%), which could have negatively affected hop storage quality. Understanding sources of oxidative stresses to hop bitter acids during postharvest handling is valuable information for determining and maintaining hop quality.
Speakers
KS

katie stenmark

OKLAHOMA STATE UNIVERSITY
Crop Science PhD Student Department of Horticulture and Landscape Architecture Oklahoma State University
Co-authors
CF

Charles Fontanier

OKLAHOMA STATE UNIVERSITY
NA
NM

NIELS MANESS

OKLAHOMA STATE UNIVERSITY
NA
Thursday September 26, 2024 12:45pm - 12:55pm HST
South Pacific 3

12:55pm HST

PH 2 - The Use of Desiccants for Proper Moisture Preservation in Green Coffee During Storage and Transportation
Thursday September 26, 2024 12:55pm - 1:05pm HST
Prolonged storage and long-distance transportation of green coffee beans exposes them to undesirable fluctuations in temperature (T) and relative humidity (r.h.), which can change the physical (wet-basis moisture content (MCwb), water activity (Aw), and color) and sensory characteristics of the coffee. High humidity also supports mold growth, decay, and microbial activities. Thus, the objective of this study was to evaluate the efficacy of commercially available desiccants for preserving the moisture content of green coffee between 10 and 12% MCwb, when stored in either hermetic packages and/or jute sacks, and to assess the corresponding impact on sensory quality. A conventional coffee storage and transportation period from Brazil to Italy with a duration of 42 days was mimicked in environmental chambers. Treatments in a 3 × 3 factorial design consisting of three packaging materials (GrainPro SuperGrain bag, GrainPro TranSafeliner, and/or jute sacks) and desiccants (Drying Beads®, CaCl2, or no desiccants) were evaluated. Additionally, four different mass ratios of green coffee to desiccant ranging from 50 to 300 – g coffee per g desiccant were also evaluated. The MCwb, Aw, and color of all samples were measured approximately weekly over 42 days. In comparison to the control (no desiccant, and only jute sacks), we observed a statistically significant impact for all tested desiccants and hermetic packages for maintaining the proper MCwb, Aw, and color. No significant difference was observed for the different desiccant masses tested when they were placed inside the hermetic packaging, but the desiccants were ineffective without the hermetic packaging. Triangle test and descriptive sensory evaluation yielded no significant differences between the use of hermetic packages with or without desiccants.
Speakers
LA

Laudia Anokye Bempah

UC DAVIS
Laudia Anokye-Bempah is a Ph.D. student in the Biological Systems Engineering Program at the University of California Davis. Her research focuses on the kinetics of coffee roasting, with the ultimate goal of designing a “Coffee Roasting Control Chart” that will be used to produce... Read More →
Thursday September 26, 2024 12:55pm - 1:05pm HST
South Pacific 3

1:05pm HST

PH 2 - Transcriptome Analysis Revealed that Metabolites and Hormone Signaling Pathway Differently Respond to Non-chilling and C
Thursday September 26, 2024 1:05pm - 1:15pm HST
Cucumber (Cucumis sativus L.) fruit is sensitive to chilling temperatures during storage, and the physiological mechanism of chilling injury (CI) is not well known. Understanding the chilling response in cucumber fruit is necessary to delay CI and extend the storage duration during postharvest. In this study, our goal was to identify CI symptoms and investigate key factors influencing on the chilling response in cucumber fruit (C. sativus var. ‘Hangang’). To assess the severity of CI symptoms, cucumber fruits were stored at low temperatures of both 13 °C (non-chilling response) and 2 °C (chilling response) for 9 d and exposed to 20 °C. As a result, various CI symptoms of discoloration, shirankage, water-soaking and necrosis area appeared on a cucumber fruit peel stored at 2 °C, resulting in loss of its marketability from 6 d. To clear the cellular mechanism of CI symptoms, transcriptome analysis was conducted in cucumber fruit stored for 1 d (early response) and 6 d (late response). The results suggested that phytohormone synthesis and signalling played major roles in chilling responses. To reveal the main phytohormone involved in the chilling response, eight phytohormones were quantified in cucumber fruit peel using LC-MS/MS. Among them, ABA was not sufficiently accumulated at 2 °C compared to 13 °C during the early response, and SA levels gradually increased by persisting chilling stress. Through these results, major phytohormone synthesis and signalling genes were selected by RT-qPCR. For further understanding of CI, targeted metabolite analysis was conducted, and amino acids such as isoleucine, serine, valine, threonine, and sucrose were identified as significant metabolites for acclimating to chilling temperatures. These findings help to elucidate the hormonal mechanisms involved in chilling response as well as the complex interplay of various molecular components involved in chilling response of cucumber fruit during storage.
Speakers
YS

Yujin Sim

Seoul national university
Co-authors
EJ

Eun Jin Lee

Seoul National University
KM

Kyeonglim Min

Seoul National University
Thursday September 26, 2024 1:05pm - 1:15pm HST
South Pacific 3

1:15pm HST

PH 2 - Fresh Weight of Indoor-Grown Lettuce under Different Postharvest Storage Practices
Thursday September 26, 2024 1:15pm - 1:25pm HST
Two-thirds of food waste occurs once the product has reached the consumer. In an effort to extend the shelf-life of produce, a common practice of hydroponic lettuce growers, particularly those who use controlled environment production systems such as greenhouses or indoor growing facilities, is to harvest the lettuce without removing the root tissue. However, the postharvest quality of this “living lettuce” has not been a focus of academic research, and its effect on the shelf-life of the produce is unknown. In this study, lettuce harvested from an indoor production facility that utilizes a vertical hydroponic setup was subjected to four postharvest treatments. Treatments included harvesting the complete lettuce plant or removing the roots after harvesting and storing the harvested produce either inside or outside of a plastic clamshell. Lettuce was stored for 28 days at 4 °C and 85% relative humidity. Fresh weight of the lettuce heads was assessed for 18 days post-harvest. As days in storage increased, the fresh weight of lettuce decreased by 0.37 grams per day. The rate of lettuce fresh weight decrease was the same across postharvest treatments, but the lettuce with roots intact stored inside a plastic clamshell had a higher fresh weight across all measured time points. A better understanding of the relationship between fresh lettuce weight and storage time under different postharvest conditions can help to increase the shelf life of the stored produce and reduce food waste.
Speakers
CB

Caroline Blanchard

Research Associate II, Auburn University
Co-authors
CR

Camila Rodrigues

Auburn University
NA
DW

Daniel Wells

Auburn University
NA
MT

Marlee Trandel Hayse

Auburn University
TR

Tanzeel Rehman

Auburn University
NA
Thursday September 26, 2024 1:15pm - 1:25pm HST
South Pacific 3

1:25pm HST

PH 2 - Modified Hydrocooling and Optimized Postharvest Handling Practices Can Improve the Shelf Life of Water Spinach During Su
Thursday September 26, 2024 1:25pm - 1:35pm HST
In an effort to improve the shelf life of water spinach (Ipomoea aquatica Forsk.) and amaranth (Amaranthus tricolor L.) during summer in humid subtropical regions like northern Taiwan, the study investigated the effectiveness of modified hydrocooling and optimized postharvest handling practices. Most farmers in Taiwan often compromised postharvest vegetable quality due to uneven cooling. The first trial implemented a modified hydrocooling system using a 10-minute 5°C shower with a multi-hole perforated pipe and smaller baskets for precooling to substitute the conventional method. The results showed that the modified hydrocooling improved cooling uniformity and reduced vegetable loss rates. Meanwhile, for some farmers needed to meet the specialized market requirement which extend vegetable shelf life, the second trial conducted optimized postharvest handling practices including storage vegetables at 11°C, consistently clean 10°C water for washing/hydrocooling, and wrapping vegetables in plastic film. These practices revealed significantly decreased the water spinach quality loss for longer duration but less effective for amaranth. Even with the addition of hypochlorous acid in washing/hydrocooling water, the shelf life of amaranth was difficult to extend due to severe pre-harvest leaf disease. In conclusion, the study showed that modified hydrocooling offers benefits for most conventional farmers by reducing vegetable loss rates. On the other hands, for farmers needed to meet the specialized market requirement, optimized postharvest handling practices significantly improves the quality of water spinach in longer shelf life. Also, the research emphasized the importance of disease management in amaranth cultivation for postharvest quality.
Speakers
WS

Wei Shiang Liao

Taoyuan District Agricultural Research and Extension Station, Ministry of Agriculture
Co-authors
AC

Ah Chiou Lee

Taoyuan District Agricultural Research and Extension Station, Ministry of Agriculture
NA
WF

Wing Fu Fung

Taoyuan District Agricultural Research and Extension Station, Ministry of Agriculture
NA
Thursday September 26, 2024 1:25pm - 1:35pm HST
South Pacific 3

1:35pm HST

PH 2 - Discovery of Biomarkers for Postharvest Pecan Color Stability Using Metabolomics and Machine Learning Algorithms
Thursday September 26, 2024 1:35pm - 1:45pm HST
Nut kernel color is a crucial quality indicator affecting consumers' first impression of the product. In the postharvest stage, nut kernels (e.g., pecans) gradually darken with increasing blue/red colors, which have a negative impact on consumers' preference. While growing evidence suggests that plant phenolics and their derivatives are linked to pecan kernel color, the compounds (biomarkers) responsible for kernel color stability during storage remain elusive. We hypothesized that: (1) the phenotype of pecan color exhibits notable variation among different cultivars during storage; and (2) this variation is attributed to changes in metabolites and their combination effects in the stage of phenolic biosynthetic pathways related to color formation. Here, pathway-based metabolomics with machine learning (ML) algorithms were employed to identify key metabolites of postharvest pecan color stability. Nine pecan cultivars with different color stabilities were selected, and the color of each cultivar was measured over a 6-month storage period (0, 1, 2, 3, and 6 months). Metabolites in phenylpropanoid, flavonoid, and anthocyanin biosynthetic pathways were analyzed in the outer layer of the kernel (testa) using liquid chromatography–mass spectrometry. Different ML models were compared to find relevant biomarkers of pecan color phenotypes. Lasso regression and support vector machine (linear kernel) in conjunction with recursive feature elimination were chosen as the most effective models to select biomarkers that predict the kernel color of pecans. Results revealed twenty marker compounds (flavonoid precursors, flavonoids, anthocyanidins, and anthocyanins) within phenylpropanoid, flavonoid, and anthocyanin biosynthetic pathways, and their roles in pecan color phenotypes during storage. Our findings provide a foundation for future research in the area and will help select genes/proteins for the breeding of pecans with stable and desirable kernel color. The collected information on biomarkers and their effects will also help set up strategies for the quality control of pecans after harvest.
Speakers
MJ

Min Jeong Kang

University of Georgia
Co-authors
JS

Joonhyuk Suh

University of Georgia
NA
LW

Lenny Wells

University of Georgia
NA
PC

Patrick Conner

University of Georgia
RP

Ronald Pegg

University of Georgia
NA
WK

William Kerr

University of Georgia
NA
Thursday September 26, 2024 1:35pm - 1:45pm HST
South Pacific 3

1:45pm HST

PH 2 - Evaluating the Effects of Controlled Atmosphere Storage on Two Georgia-grown Pecan Cultivars
Thursday September 26, 2024 1:45pm - 1:55pm HST
Pecans are an important commodity in Georgia with 180,000 planted acres in 2022. The crop undergoes quality deterioration through lipid oxidation, off-flavor development, and kernel browning in storage. Many new varieties have been introduced to the State with little known about their storage viability. Knowing the varieties performance after harvest can help growers plan for an uncertain market by reducing storage costs. The standard industry technique for storage is low temperature (0°C) cold rooms, which can quickly become expensive over long periods of time due to rising electricity costs. The addition of controlled atmosphere (CA) may possibly aid in reducing oxidation rate and kernel browning during storage. The controlled atmosphere would reduce the amount of oxygen (O2) substituted by carbon dioxide (CO2). Previous studies reported shelf-life increases after oxygen levels were reduced to 2-3% using nitrogen (N2), however carbon dioxide is less commonly seen. Half pecan kernels were hand shelled and sorted before being stored under varied conditions for up to five months. Three treatments were applied to two GA pecan varieties (‘Desirable’ and ‘Sumner’). Conditions included elevated storage temperature at 10 °C, low temperature storage (5 °C) plus CA (10% CO2 4% O2), high temperature storage plus CA, and a control of cold storage at (0 °C). Quality assessments were conducted every month for change of weight, firmness, and color values. Firmness values were conducted using MecMesin texture analyzer to penetrate the half kernel until the breakpoint was achieved. A significant difference was seen in ‘Desirable’ when comparing the days of storage against the atmospheric conditions in the chroma values with the CA treatments exhibiting higher chroma. The Sumner variety saw significant differences in the chroma after two months of storage and varied differences in lightness values throughout storage. A significant difference was seen between the two varieties in firmness values with Sumner exhibiting higher firmness.
Speakers
RC

Ramsey Corn

University of Georgia
Co-authors
AD

Angelos Deltsidis

University of Georgia
CE

Camille Esmel McAvoy

University of Georgia
NA
OG

Orestis Giannopoulos

University of Georgia
Thursday September 26, 2024 1:45pm - 1:55pm HST
South Pacific 3
 
Friday, September 27
 

1:25pm HST

PH 3 - Development and Characterization of Bio-based Nanoparticle Coatings from Sweetpotato Peels
Friday September 27, 2024 1:25pm - 1:35pm HST
Bio-based nanoparticle coatings were developed using nanomaterials extracted from sweetpotato peels and combined with other biopolymers to reduce postharvest deterioration of sweetpotato roots and other fresh produce items. The sustainable coating materials applied as thin films to the surface of washed sweetpotato roots reduced postharvest deterioration, weight loss, and respiration rate, while maintaining root market quality. Chemical and physical characterization was made of the cellulose nanomaterials (CNMs), pectin, and phenolic compounds from ‘Beauregard’ sweet potato peel tissue. The peel contained 40.2% cellulose, 19.1 % lignin, 10.8% hemicellulose and 29.8% pectin. The extracted CNMs from the peel tissue showed a high degree of crystallinity, particularly for cellulose nanocrystals. The CNMs and pectin fractions formed stable water dispersions with strong shear thinning behavior suitable for coating application. The thin films formed by the CNMs and pectin fractions exhibited an entangled fiber network structure with significantly reduced water and gas permeability. Our results demonstrated the feasibility of using sweetpotato peel tissue as an integral component in a bio-based nanoparticle film coating.
Speakers
DP

David Picha

Louisiana State University Agricultural Center
Co-authors
QW

Qinglin Wu

LSU Agricultural Center
NA
RA

Ragab Abouzeid

School of Plant, Environmental and Soil Sciences
NA
Friday September 27, 2024 1:25pm - 1:35pm HST
Lehua Suite
 


Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
  • Career and Professional Development
  • Colloquium
  • Competitions
  • General - Registration/Speaker Center /etc.
  • Hort Theater & Collaboration Center
  • Interactive Workshop
  • Interest Group Session
  • Keynotes and Featured Sessions
  • Meals and Tours
  • Meetings - Committee/Division/interest Group
  • Oral presentation (Individual talk)
  • Oral Sessions
  • Poster presentation (individual talk)
  • Poster Session
  • Reception
  • Ticketed Events