Loading…
Poster presentation (individual talk) clear filter
Tuesday, September 24
 

12:30pm HST

UG 1 - A Mentor-Mentee Undergraduate Scientific Communications Course
Tuesday September 24, 2024 12:30pm - 12:40pm HST
TPSS 491 Scientific Communications is a new one-credit undergraduate course in the TPSS Department. It was offered for the first time in Fall 2023 with six undergraduate students. The objective was to enable personalized instruction and mentoring of students on their projects. Consulting with the instructor, each student decided on two projects to work on. Students indicated what specific feedback they were looking for, and the instructor provided individualized assistance. One-to-one meetings enabled more detailed personal instruction. Students were more motivated when working on their own projects. This course’s flexible meeting dates and times allowed tailoring it to each student’s schedule. TPSS 491 helped me to develop and complete personal projects that are crucial in professional development. The flexibility of the course allowed me to partake in one-on-one meetings that worked with my schedule as a full-time student which was one factor why I decided to take this course. Being able to receive personalized feedback on my projects allowed me to make constant improvements that made me feel confident in my work, especially as I plan to use these as tools to enter the professional setting after graduation. The course’s flexible scheduling and wide choice of projects were very appealing to me. As an upper-class student, I had multiple ongoing research projects, more classes than usual, and a research-based part-time position. Each commitment involved weekly meetings, assignments, and demanded a significant portion of my time and attention. However, the flexibility of the “To Be Determined” scheduling of the course created more freedom within my schedule, providing me with the necessary time to complete my other projects and courses. Having the choice to decide which projects to work on enabled me to receive valuable feedback on an important graduate school funding application and a research project. Without this flexibility, I might not have received as much feedback on these important parts of my academic journey. In conclusion, TPSS 491 is an important course for undergraduate students to receive valuable feedback from the instructor regarding scientific communication. TPSS 491 proved to be an invaluable course for me. The constructive feedback I received on my projects was instrumental in my personal and academic growth. This course allowed me to focus on projects that held significance for my academic and professional development and provided the flexibility needed to balance various commitments required to advance my experience as an early-career researcher.
Speakers
DJ

Danielle Jaden Yamagata Santos

Univ. of Hawaii at Manoa
NA
Co-authors
KK

Kent Kobayashi

Univ. of Hawaii at Manoa
KG

Koa Grabar

Univ. of Hawaii at Manoa
NA
Tuesday September 24, 2024 12:30pm - 12:40pm HST
South Pacific 3

12:40pm HST

UG 1 - Growth and Volatile Compounds on Thai Herbs at Different Cultivation Systems in Vertical Farming
Tuesday September 24, 2024 12:40pm - 12:50pm HST
Thai culinary herbs such as coriander and sweet basil become popular. For production of them in vertical farming, we need to investigate the suitable growing conditions, especially the relationship between nutrition condition in the root zone and vegetation growth. Moreover, we investigated the aroma quality under these conditions. Here, we report the comparing of nutrient conditions at both of perlite and hydroponic cultivation. Thai coriander (Coriandrum sativum ‘Saisamorn’) and Thai sweet basil seeds (Ocimum basilicum ‘Micro’) were sown under white LEDs for 24 hr. After 14 days, seedlings were transplanted into deep flow hydroponic culture in environment-controlled growth chamber at air temperature of 25℃, 60% relative humidity, and luminance at PPFD 450 µmol/m/s. The photoperiod was set for 16 hr. light and 8 hr. dark. Different concentrations ranged from EC 1.6, 2.0, and 3.5 at pH 5-6 of nutrient solution were supplied to hydroponic system and perlite system. The perlite system was used by mixing vermiculite with perlite at ratio of 1:2. The mixture of vermiculite and perlite was poured into planter for herb cultivation. Dripping tubes were provide for irrigation. After 40-50 days of transplant, vegetative growth; fresh weight, shoot growth, root length, and stem growth were measured. The major aromatic compounds for coriander such as Decanal, Dodecanal, (Z)-3-hexenol, (Z)-3-hexenyl acetate, and trans-2-dodecenal, and major aromatic compounds for sweet basil such as linalool, eugenol, methyl eugenol, estragole, eucalyptol were evaluated by using GC-MS. The growth and volatile compounds of coriander and sweet basil are varied toward nutrient solution condition and cultivation systems. As the result of this study, it can be assumed that we have found one of the optimum conditions to cultivate Thai herbs in a controlled environment.
Speakers
AS

Akira Sakai

Meiji University
Co-authors
JS

Junjira Satitmunnaithum

Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University , Japan
TI

Takashi Ikeda

School of Agriculture, Meiji university
NA
Tuesday September 24, 2024 12:40pm - 12:50pm HST
South Pacific 3

12:50pm HST

UG 1 - Growth, Anthocyanin Content and Its Gene Expression in Purple Color Paprika Fruit Applying Blue Light at Night
Tuesday September 24, 2024 12:50pm - 1:00pm HST
In this study, we investigated the effect of night blue lighting on anthocyanin content and expression of its transcription factors and structural genes in purple paprika fruits. Purple paprika fruits (Capsicum annuum L. ‘Tequila’) were used for this experiment. Before light treatment, we used fifty plants grown under hydroponic conditions (EC 2.5, pH 6.0) in a greenhouse. At 10 days after pollination, we started irradiating the fruits at night with blue LEDs light at wavelength 460 nm and radiation intensity at 500 W-m-2. Control is non-irradiated treatment. Fruits were harvested at 15, 20, and 40 days after pollination, for fresh weight evaluation, then following analysis was performed. In the pigment analysis, anthocyanin content was determined based on cyanidin-3-glucoside. By adding 10% acetic acid to frozen ground fruit sample overnight at 4C, the absorbance was measured at 530 nm. In the gene analysis, RNA was extracted from fruit and cDNA was transcripted using kit with gDNA eraser. Then, cDNA template was mixed with PCR Master Mix for quantitative RT PCR analysis. The result was calculated as relative expression to UBI. As the results, fresh weight was not affected by light. Anthocyanin content of treated fruit increased approximately twice as much as that of control fruits at 15, 20, and 40 days after pollination. Furthermore, the expression levels of transcription factors; HY5, MYB, bHLH, and WDR, and structural genes; PAL, CHS, F3H, ANS, DFR, and UFGT increased in treated fruits. These results indicate that blue light irradiation enhanced anthocyanin synthesis in purple paprika fruits, by increasing the expression of its transcription factors and structural genes.
Speakers
RM

Ryuhei Mitsuzuka

Meiji University
Co-authors
IA

Itsuki Abe

School of Agriculture, Meiji University,
NA
JS

Junjira Satitmunnaithum

Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University , Japan
TI

Takashi Ikeda

School of Agriculture, Meiji University
NA
Tuesday September 24, 2024 12:50pm - 1:00pm HST
South Pacific 3

1:00pm HST

UG 1 - The Effect of Mixing Artificial Seawater into Hydroponic Solution to Tomato Fruit Growth and Ion Contents
Tuesday September 24, 2024 1:00pm - 1:10pm HST
NaCl has been frequently used for applying salt stress to plants. However, in this study, we tested to use sea salt instead of NaCl for applying salt stress to tomato plants. Plants were grown under hydroponic conditions, mixing artificial seawater to nutrient solution (liquid fertilizer). To estimate strength of the stress treatment, we used EC (Electrical Conductivity) value to control it. Fifty-six seedings of two tomato varieties ('Momotaro York' and 'Saturn') were grown at deep flow technique in a greenhouse, and the stress treatments were applied 10 days after the first truss bloomed. In experiment 1, we designed 3 treatments (EC was set for 5.0, but the ratio of Liquid Fertilizer : Artificial Seawater were 5.0 : 0, 1.5 : 3.5 and 2.5 : 2.5, respectively). In experiment 2, we designed 3 treatments (EC for liquid fertilizer was set at 1.5, but the concentration of artificial seawater was different as Liquid Fertilizer : Artificial Seawater were 1.5 : 0, 1.5 : 3.0 and 1.5 : 6.0, respectively). Fruits were harvested at almost 90 days after blooming and fruit weights were measured. The contents of 5 cations and 3 anions in fruit were analyzed by high-performance liquid chromatography (HPLC), then we added all of the ions contents as total ion contents. As a result, fruit weight was not different significantly at experiment 1, but decreased when EC value was increased at experiment 2. In experiment 1, when the ratio for liquid fertilizer was increased, the total ion contents were increased, especially Na in treatment at (1.5 : 3.5) and Ca2 in treatment at (5.0 : 0) were increased. At experiment 2, total ion contents increased when the ratio of sea salt was increased. In conclusion, we estimated various strength of stress by EC value in this study. Then the different ratio of liquid fertilizer and artificial seawater caused different ion contents in tomato fruits. This result was similar for the two varieties.
Speakers
MB

Miyuki Baba

Meiji University
Co-authors
RE

Riko Endo

School of Agriculture, Meiji University
NA
TI

Takashi Ikeda

School of Agriculture, Meiji University
NA
Tuesday September 24, 2024 1:00pm - 1:10pm HST
South Pacific 3

1:10pm HST

UG 1 - Detection of Postharvest Quality of Cut Roses using Vis/NIR Spectroscopy
Tuesday September 24, 2024 1:10pm - 1:20pm HST
Visible and Near-infrared (Vis/NIR) spectroscopy is widely used to analyze plant physiological state and chemical properties non-destructively and rapidly. Recently, Vis/NIR spectroscopy has been used to analyze and estimate the photosynthesis capacity, water content, and soluble solids content (SSC) in various horticultural crops such as fruits and vegetables. Cut roses are often sensitive to water stress under unfavorable conditions during storage and transportation. Water stress of cut flowers generally leads to premature wilting of leaves and petals, thus decreasing the vase life of cut flowers. In this study, we measured the water content and SSC and evaluated the postharvest quality of cut roses using Vis/NIR spectroscopy to screen the quality of cut rose flowers for promoting exportation. Cut roses underwent either wet transport (WT), dry transport (DT), or dry and sucrose treatment, to identify the characteristics of reflectance wavelengths (RW) closely correlated with water content of cut flowers based on Vis/NIR data. Our results showed that dry treatment reduced the vase life and maintenance of positive water balance (PWB) and initial fresh weight of cut roses. Sucrose treatment exhibited a longer duration of retaining PWB and increased SSC in the petals and leaves of cut rose flowers. WT resulted in cut roses with a longer vase life of 1.4 d, compared to DT. DT treatment also decreased the capacity of the cut flowers to maintain PWB by 0.7 d compared to WT. Our results also showed that the Vis/NIR reflectance of the rose petals in the wavelength range 620-720 nm differed among treatments. In particular, the water balance of cut roses showed a positive correlation with RW735 nm and a negative correlation with RW680/RW(620 720) nm, while the SSC of cut roses was positively correlated with RW680/RW(620 720) nm. These results imply that it is possible to evaluate and screen the postharvest quality of rose flowers based on the water relation of cut flowers using Vis/NIR spectroscopy data.
Speakers
ZL

지영 함

안동 국립 대학교
Co-authors
BI

ByungChun In

Andong National University
NA
ST

Suong Tuyet Thi Ha

Andong National University
NA
YK

yongtae kim

Andong National University
Tuesday September 24, 2024 1:10pm - 1:20pm HST
South Pacific 3

1:20pm HST

UG 1 - Developing Utah’s Own Sap Drinks
Tuesday September 24, 2024 1:20pm - 1:30pm HST
Maple products, such as syrup, sap-based beverages, soft drinks, candies, and butters, are significant agricultural commodities in Canada and the northeastern United States. In recent years, syrup derived from various maple sources, including bigtooth maple (Acer grandidentatum), boxelder maple (Acer negundo), Norway maple (Acer platanoides), silver maple (Acer saccharinum), and sugar maple (Acer saccharum), has been commercialized in the Intermountain West. However, producing one gallon of maple syrup requires approximately 40 gallons of sap and consumes substantial amounts of energy and time due to the need for extensive heating and evaporation. Utilizing sap as a drink can help conserve energy, expand the sap product market, and retain essential minerals with potential health benefits. The purpose of this study was to develop and evaluate beverages made from sap obtained from bigtooth maple, boxelder maple, and Norway maple. Sap samples were gathered from maple trees in Cache County, Utah, filtered through a food-grade filter, bottled in 12 oz glass containers, sealed, and then autoclaved at 121°C. Sugar concentration in both raw and autoclaved sap samples was determined utilizing a refractometer, while comprehensive mineral analyses were conducted by submitting samples to the Utah State University Analytical Laboratories. These drinks contain rich mineral nutrients, varying with plant species. A Utah’s Own designation will be applied to these drinks.
Speakers
CS

Catherine Sun

Sky View High School
Tuesday September 24, 2024 1:20pm - 1:30pm HST
South Pacific 3

1:30pm HST

UG 1 - Effect Of Temperature Alterations On Phytochemicals Accumulation Among Two Variety Of Feverfew Cultivars
Tuesday September 24, 2024 1:30pm - 1:40pm HST
Feverfew, a member of the Asteraceae family, has a long history of traditional use for various health purposes, including anxiety and depression management, and alleviating arthritis and inflammation. Feverfew consists of a specific chemical compound named parathenolide which is a phytochemical naturally found in Tanacetum parthenium, which plays a significant role in being responsible for feverfew’s anti-inflammatory effects. This study aims to investigate the effect of the temperature changes in parathenolide accumulation among two varieties Matricaria Tetra White and Matricaria Tetra Virgo Feverfews based on their genetic differences. Feverfew cultivars will be grown in a container containing potting mix which has enough nutrients for plant growth and development. The two varieties will be randomized with each variety receiving varying temperature differences (low, medium, and high). The accumulation for parathenolide will be analyzed using HPLC analysis to evaluate the accumulation of the phytochemical in each variety in response of the differences in temperatures. Among the phytochemicals of interested in this study include an understanding the effect of temperature on the accumulation and synthesis of the phytonutrients can highly assist scientists and health care professionals to increase and promote medicinal plants. Feverfew can benefit low-income communities like urban areas where majority of the community members are incapable to afford medication that can treat sickness such as anxiety and depression.
Speakers
JG

Jalynn Greer

Kentucky State University
I am interested in botany specializing in herbalism. My hobby is crocheting.
Co-authors
TN

THEONESTE NZARAMYIMANA

Kentucky State University
Tuesday September 24, 2024 1:30pm - 1:40pm HST
South Pacific 3

1:40pm HST

UG 1 - Increased Airflow Improves Yields of High Density Indoor Micro Dwarf Tomato
Tuesday September 24, 2024 1:40pm - 1:50pm HST
Indoor agriculture production allows producers to control all of the environmental parameters given a system with enough sophistication. However, the expense of comprehensive systems is prohibitive from an economic standpoint, in most cases. Identifying the most important parts of the plant environmental experience to control is a critical part of building efficient and economical indoor farms. In this study with temperature, nutrition, lighting and other aspects of the farm being controlled, airflow was manipulated. Micro dwarf cherry tomato varieties (Solanum lycopersicum ‘Tiny Tim’ and ‘Pinocchio Orange’) were grown in an NFT style hydroponic systems for 90 days. All plants were grown in a greenhouse with natural and supplemental lighting. Control plants received airflow native to the greenhouse environment, mixing fans, ridge line vents and pad fan based HVAC control. The treated plants experienced a “high air flow” condition. The results indicate a clear improvement in the fruit weight, number of fruit per plant, and fruit diameter for plants which experienced increased airflow. These results, while preliminary, demonstrate the clear advantage of additional airflow targets for indoor plant production and provide the basis for an important indoor production lever to improve yields in micro dwarf cherry tomatoes.
Speakers
MA

Matthew Arrington

Brigham Young University
Dr. Matt Arrington is an assistant professor of applied plant science at Brigham Young University. Matt graduated with his PhD in horticulture from Washington State University and Masters degree from Oregon State University. His areas of research focus include crop efficiency in controlled... Read More →
Co-authors
NG

Nathan Grooms

Brigham Young University
NA
Tuesday September 24, 2024 1:40pm - 1:50pm HST
South Pacific 3

1:50pm HST

UG 1 - Assessing the Impact of Urban Environments on the Biomolecular Composition of 'Mosco' Chili Peppers
Tuesday September 24, 2024 1:50pm - 2:00pm HST
The rapid increase in urban populations and urbanization, coupled with the increasing demand for natural resources, has underscored the critical significance of global sustainability. Urban farming has been recognized as a promising solution to address these challenges. Despite the growing popularity of urban agriculture, there is a lack of research on how the built environment and urban micro-climates impact plant growth and food crops cultivated in cities. Our study aims to address this gap in knowledge by investigating how urban climates impact the growth and quality of 'Mosco' chili peppers, a significant crop in the Southwest United States. Peppers were cultivated in four different locations at the CSU Spur research facility in Denver, Colorado, including a ground-level plot, two rooftop areas with varying sunlight exposure, and a rooftop site under a solar panel array. Throughout the growing season, climate data and plant growth metrics were consistently monitored. Post-harvest, we characterized the biomolecular composition of the peppers using standardized methods from the Periodic Table of Food Initiative (PTFI). Collectively, the results of this study offer valuable insights into the impact of urban environments to the production and quality of peppers, informing sustainable urban farming practices and enhancing our understanding of plant adaptability in city settings.
Speakers
KB

Kathryn Braun

Colorado State University
Co-authors
EG

Eliza Gross

Colorado State University
NA
JB

Jennifer Bousselot PhD

Colorado State University
NA
JP

Jessica Prenni PhD

Colorado State University
NA
Tuesday September 24, 2024 1:50pm - 2:00pm HST
South Pacific 3

2:00pm HST

UG 1 - Growth and Physiology of Three Buckwheat Cultivars under Reduced Substrate Water Contents
Tuesday September 24, 2024 2:00pm - 2:10pm HST
Instances of water scarcity attributed to insufficient precipitation have amplified across the western United States (U.S.), leading to restrictions on ornamental plant irrigation. Fagopyrum esculentum (buckwheat) is widely used in pollinator-friendly U.S gardens due to its ornamental value and significance to pollinators. However, buckwheat's drought tolerance has not been widely investigated. The objectives of this research are to determine the effects of substrate volumetric water content on the visual quality, growth, and physiology of F. esculentum (common buckwheat), F. esculentum ‘Rose Red Soba’ and F. esculentum ‘Takane Ruby’. Cultivars were grown in an electromagnetic sensor-based automated irrigation system at substrate volumetric water content of 0.10 m3·m-3 (drought) and 0.40 m3·m-3 (control) for 35 days in a greenhouse. Plant growth index [(height (width 1 width 2)/2)/2], proportion of visibly wilted leaves, and the number of flowers were recorded weekly throughout the experiment. Gas exchange parameters were recorded at the termination of the experiment. Decreased substrate volumetric water content increased the number of visibly wilted leaves on three buckwheat cultivars. The plant growth index and number of flowers also declined as substrate volumetric water contents decreased from 0.40 to 0.10 m3·m-3. Alternatively, 'Rose Red Soba' and common Buckwheat exhibited a lower net photosynthesis rate in decreased substrate volumetric water content. Drought treatment also led to decreased stomatal conductance among all three buckwheat cultivars. Our results indicate that drought could impair buckwheat's ornamental value and growth due to the increased accumulation of visibly wilted leaves and decreases in plant growth index. Additionally, buckwheat's ability to attract pollinators could decline under drought conditions due to the loss of flower abundance. Nevertheless, 'Takane Ruby' buckwheat could maintain a higher capability of drought tolerance compared with 'Rose Red Soba' and common Buckwheat due to its capacity to maintain photosynthesis rate when substrate volumetric water content decreases.
Speakers
avatar for Sawyer Zook

Sawyer Zook

Undergraduate Researcher, University of Wyoming
I am currently an Assistant Researcher and A EPSCoR NASA fellow at the University of Wyoming. I bring a diverse range of experience from various roles related to Agriculture Research, Oil seed proccesing, Water/Wastewater Treatment, Plumbing, Welding. As well as an Organization Leadership/Horticulture... Read More →
Co-authors
DA

David Alan Claypool

University of Wyoming
NA
JC

Ji-Jhong Chen

University of Wyoming
NA
RJ

Randa Jabbour

University of Wyoming
NA
Tuesday September 24, 2024 2:00pm - 2:10pm HST
South Pacific 3
 


Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
  • Career and Professional Development
  • Colloquium
  • Competitions
  • General - Registration/Speaker Center /etc.
  • Hort Theater & Collaboration Center
  • Interactive Workshop
  • Interest Group Session
  • Keynotes and Featured Sessions
  • Meals and Tours
  • Meetings - Committee/Division/interest Group
  • Oral presentation (Individual talk)
  • Oral Sessions
  • Poster presentation (individual talk)
  • Poster Session
  • Reception
  • Ticketed Events