Loading…
Poster presentation (individual talk) clear filter
Thursday, September 26
 

12:00pm HST

WCPM 2 - Evaluating Bacterial Diversity and Pest Control Efficacy of Steam Disinfestation Treatments in the Salinas Valley Spinach and Lettuce Fields
Thursday September 26, 2024 12:00pm - 12:10pm HST
As the specter of climate change looms larger, sustainable and environmentally friendly alternatives for pest and pathogen control in agriculture are becoming increasingly imperative. Steam disinfestation, once an antiquated method overshadowed by chemical pesticides, is experiencing a resurgence due to heightened environmental concerns. Despite its historical use, there has been limited exploration of scaling up steam disinfestation for field applications in vegetable crops. Therefore, there is a central focus in this project to evaluate the efficacy of band steaming for disinfestation in spinach and lettuce fields in the Salinas Valley. This study seeks to advance the validation of banded steaming as a practical alternative to chemical fumigation by conducting a comprehensive assessment of vegetable productivity in lettuce grown in steamed soils versus non-steamed soils. The experiment utilized a custom-built steam applicator equipped with a low-pressure 1,000 kg/hour steam generator in Salinas, CA, during 2023. All research and trials were conducted at the Salinas Extension and USDA Center. In addition to evaluating efficacy of steam disinfestation for pest control, a preliminary evaluation of its impact on the soil microbiome was conducted on spinach and lettuce fields. Soil samples were collected before and after steam application, and crops were meticulously monitored for soil-borne disease and weed control, alongside yields at harvest. Preliminary results indicate effective weed control and lower pathogen pressure after steam treatments. Furthermore, the trials conducted from July 2023 to September 2023, involved verifying the performance of the steam applicator treatments, and assessing beneficial soil organisms using 16S sequencing in the spinach and lettuce fields. Through a thorough analysis of the outcomes derived from these trials, our objective is to offer in-depth insights into the overall efficacy of steam disinfestation and its potential implications for agricultural practices. This investigation is particularly focused on assessing its impact on the soil microbiome, the presence of pathogens, and its effectiveness in weed control.
Speakers
EE

Erika Escalona

graduate student, UC Davis
Co-authors
Thursday September 26, 2024 12:00pm - 12:10pm HST
South Pacific 2

12:10pm HST

WCPM 2 - Development of Minirhizotron for Nondestructive Rapid Detection of Parasitic Nematodes
Thursday September 26, 2024 12:10pm - 12:20pm HST
Plant-parasitic nematodes are a historic problem in a wide range of horticultural and agronomic production conditions. Many horticultural crops can be negatively impacted during production since near-ideal environmental conditions are created for nematode growth and reproduction. Once established in the soil of a nursery, orchard, or greenhouse, there is also potential to spread the plant damaging nematodes via machinery, handheld equipment, soil movement, or footwear. Nematode presence may be detected by root visual symptoms of infected plants, but laboratory nematode assays are a more reliable diagnostic tool – however costly and time consuming. Our team developed a portable handheld infrared thermography-minirhizotron device for rapid, nondestructive detection of the presence or absence of plant parasitic nematodes. This self-contained device, using infrared thermography, processes images using an algorithm. It can be operated by trained personnel to perform on-site rapid diagnosis in a nursery environment. A prototype has been constructed and tested in laboratory setting. It is equipped with wireless communication and network capabilities, allowing remote access and control. The goal is to develop a smart device that can be scaled up and networked for early detection and rapid response to a wide range of soil nematodes of horticultural importance. The algorithm is developed to distinguish between root-knot and cyst nematodes in infected plants.
Speakers
TP

Tim Pannkuk

Sam Houston State University
Co-authors
AS

Autumn Smith-Herron

Sam Houston State University
NA
FY

Faruk Yildiz

Sam Houston State University
NA
JM

Junken Ma

Sam Houston State University
NA
RP

Recayi Pecen

Sam Houston State University
NA
Thursday September 26, 2024 12:10pm - 12:20pm HST
South Pacific 2

12:20pm HST

WCPM 2 - Genome Sequencing of Crapemyrtle Bark Scale for Developing Advanced IPM Strategies
Thursday September 26, 2024 12:20pm - 12:30pm HST
Crapemyrtle bark scale (CMBS; Acanthococcus lagerstroemiae), an invasive insect pest threatening horticultural industries, has spurred the search for sustainable control methods. Our recent research focused on two key aspects of CMBS behavior: feeding and mating. In feeding, our studies revealed that while nicotine does not affect the phloem salivation process in CMBS, it significantly impairs the insect’s ability to ingest phloem sap, suggesting that nicotine interferes with the precise muscular coordination in the acephalothoracia region of CMBS, thereby offering a potential mechanism for chemical control. By identifying the genes that encode nicotinic receptors, we can pinpoint potential chemical targets to disrupt CMBS feeding behavior. In studying mating behavior, we found that mating is crucial for CMBS reproduction. Solid-phase micro-extraction and GC/MS assays revealed that CMBS release unique volatile compounds at different life stages. By identifying the genes responsible for sex pheromone production and pheromone receptors, our research lays the groundwork for developing pheromone-based traps and mating disruption strategies. Moreover, the discovery of juvenile hormone receptors and their expression at various developmental stages suggests additional opportunities to hinder CMBS growth and reproduction. We are conducting a comprehensive genomic analysis of CMBS using PacBio SMRT, Hi-C, and Illumina genome sequencing. This genomic framework will be used to develop innovative pest control strategies to control CMBS populations while supporting integrated pest management (IPM) techniques and reducing environmental impact.
Speakers
BW

Bin Wu

Texas A
My integrated research and Extension programs focus on the evaluation, selection, and breeding of horticutlural specialty crops, as well as the study of insect-plant interactions and natural enemies. The goal is to develop integrated pest management (IPM) strategies for controlling... Read More →
Co-authors
HQ

Hongmin Qin

Texas A
NA
HD

Hui Duan

USDA
NA
MP

Margaret Pooler

Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of Agriculture-Agricultural Research Service
NA
Thursday September 26, 2024 12:20pm - 12:30pm HST
South Pacific 2

12:30pm HST

WCPM 2 - A New Technique for Visual and Quantitative Assessment of Pesticide Applications to Tree Trunks for Control of Trunk-boring Insects
Thursday September 26, 2024 12:30pm - 12:40pm HST
Water sensitive paper (WSP), a yellow paper that stains blue in the presence of water, can be used to evaluate spray characteristics. While traditionally used as 2x3-inch cards placed in the canopy, we developed a WSP wrap that can be wrapped around a trunk, sprayed, and removed without damaging the trunk to assess spray distribution for control of trunk-boring insects. Trunk wraps are made by adhering a 1x8.5-inch strip of WSP to a 1.75x8.5-inch strip from a printable vinyl sticker sheet. To install, the adhesive is exposed, the wrap is manually wrapped around the trunk, and pressure is applied by gripping the wrapped portion of the trunk. However, the tapered shape, bumpy surface, and small trunk caliper, as well as humidity can cause wraps to unravel during experiments. In preliminary tests, 50% of uncoiled, i.e., flat, 4.25-inch wraps unraveled from 16.5 mm caliper Acer rubrum ‘Franksred’ Red Sunset® red maple trunks. Our objective was to test if pre-coiling wraps prevented unraveling. We tested four treatments with five replications each: 1. 8.5-inch wraps coiled and stored in 2-inch diameter PVC, 2. 8.5-inch uncoiled wraps, 3. 4.25-inch wraps coiled and stored in 0.75-inch PVC, and 4. 4.25-inch wraps coiled in 0.75-inch PVC and stored in 1-inch PVC. After 2 weeks of storage, we installed wraps on 16.5 mm caliper Red Sunset® trunks. After 5-10 minutes, we reapplied pressure to both 8.5-inch wraps and 4.25-inch flat wraps because they unraveled, our standard practice; both 4.25-inch pre-coiled wrap treatments remained tightly wrapped and did not require this step. After an additional 5-10 minutes we assessed whether or not wraps were tightly wrapped around trunks. All wraps within both 4.25-inch pre-coiled wrap treatments remained tightly wrapped around trunks. All 8.5-inch uncoiled wraps unraveled and 40% of 8.5-inch pre-coiled wraps unraveled suggesting a modest benefit to coiling this length and that extra length is not beneficial. Following this experiment, we successfully used pre-coiled 4.25-inch wraps on 16-19 mm caliper maple and 8.5-inch wraps on 46-52 mm caliper oak tree trunks. We observed that repeated wrap installation (approx. ≥5 times) to the same location on the same day sometimes caused minor bark damage. Pre-coiled wraps of the correct length unraveled in the high humidity of day-time field experiments but remained tightly wrapped in evening trials under less humid conditions. To maintain the coil during storage, we protected wraps with paper, then secured them with a rubber band.
Speakers
AF

Amy Fulcher

University of Tennessee
Co-authors
KM

Karl McKim

The University of Tennessee
LW

Laura Whaley

University of Tennessee
NA
LF

Lauren Fessler

University of Tennessee
NA
LS

Lily Slade

University of Tennessee
NA
Thursday September 26, 2024 12:30pm - 12:40pm HST
South Pacific 2

12:40pm HST

WCPM 2 - Factors Affecting Spray Coverage on Red Maple Trunks from an Air-Assisted Sprayer
Thursday September 26, 2024 12:40pm - 12:50pm HST
Trunk-boring pests are a significant threat to nursery crops. Despite the prominence of air-assisted sprayers, little research has been published about their coverage of tree trunks. We assessed spray characteristics of a Jacto A400/850 sprayer with the objective of determining the lowest spray rate that provided at or near 100% trunk coverage. Water sensitive paper (WSP) was wrapped around the trunks at two heights in an external row and the middle row of a 3-row block of red maples (Acer rubrum) to assess coverage. Assessments included 15 trials with application rates from 65 to 244 GPA at 1.5 and 2.5 mph tractor speeds. Travel Speed: Spraying at 108 GPA and 112 GPA achieved ≥95% coverage when traveling 1.5 mph with windspeeds less than 1.5 mph. Spraying 112 GPA at 1.5 mph provided 96% coverage on wraps at both heights despite a maximum (unsustained) windspeed of 3.9 mph. Increasing the travel speed to 2.5 mph reduced the spray rate to 68 GPA and coverage to 79%. Spraying 244 GPA when traveling 1.5 mph provided 95% coverage. Increasing the travel speed to 2.5 mph decreased the rate to 146 GPA, and yielded coverage of 97%. Spraying 146-224 GPA with 1.0 mph average windspeed or less yielded ≥95% coverage in all four trials. Wind Speed: When traveling 1.5 mph and spraying 108 GPA with an average windspeed of 1.3 mph, 96% coverage was achieved. Coverage was reduced to 88% when the average windspeed increased to 2.5 mph. Stakes: Trees were secured using 1-inch stakes installed 3 inches from the western face of each trunk. The western face of wraps at 9 of 12 locations had coverage equal to or greater than that of the total wrap in three trials with less than 1.3 mph average windspeed. Row: In 10 trials, there was ≤2.5% difference in coverage between external and middle rows. However, in 5 trials the middle row had greater coverage by at least 6%. Spraying 109-112 GPA can provide near complete trunk coverage under low wind speeds. Higher spray rates can overcome high wind and travel speed, but are undesirable given the potential for drift and waste. Neither presence of a stake nor middle row position equates to worse coverage. Trees in the middle row may benefit from being equidistant from the sprayer as it travels down both driveways. These results provide a framework for future trunk coverage tests utilizing variable-rate technology.
Speakers
AF

Amy Fulcher

University of Tennessee
Co-authors
BL

Benjamin Lockwood

University of Tennessee
NA
CF

Cody Fust

Auburn University
NA
HZ

Heping Zhu

USDA-ARS
NA
KM

Karl McKim

The University of Tennessee
LW

Laura Whaley

University of Tennessee
NA
LS

Lily Slade

University of Tennessee
NA
Thursday September 26, 2024 12:40pm - 12:50pm HST
South Pacific 2

12:50pm HST

WCPM 2 - Rice Hull Use in Container Production; Economics and Efficacy
Thursday September 26, 2024 12:50pm - 1:00pm HST
Weed control in woody ornamental container production is one of the most expensive inputs in production. Preemergent herbicides, mulches and hand labor are all methods of delaying, impeding, or removing weeds that will negatively impact the growth and aesthetics of the produced container plant. One method gaining popularity in Central Florida to reduce weed competition is the use of rice hulls (RH) as a mulch. Effective mulches will reduce the amount of weed competition plants face. Rice hulls are a byproduct from the rice industry and deemed a disposed waste. RH are applied by hand in a layer of about 0.5 to 1 inch deep and dry out in a relatively quick manner. Growers anticipate that RH reduce the costs of weed competition and hand labor from weeding operations. This research investigated the economic cost of RH and benefit of RH mulch in terms of weed growth reduction.
Speakers
SS

Shawn Steed

University of Florida
Thursday September 26, 2024 12:50pm - 1:00pm HST
South Pacific 2

1:00pm HST

WCPM 2 - Organic and Synthetic Herbicides for Controlling Liverwort Growth in Containerized Ornamental Production
Thursday September 26, 2024 1:00pm - 1:10pm HST
Liverwort (Marchantia polymorpha L.) is a nonvascular, chlorophyll-containing, primitive, spore-bearing bryophyte. It is one of the major weed problems in container nurseries and greenhouse operations as it competes with the ornamental plant for resources within the container. Application of herbicides is a major component of any weed control program in ornamental production systems. There are limited herbicides labeled for liverwort control in greenhouse container production. A greenhouse experiment was conducted to evaluate the effect of various organic and synthetic herbicides on controlling liverwort growth. The herbicides were applied to nursery containers filled with standard substrate and amended with controlled release fertilizer for assessing the post-emergent liverwort control. Organic products namely Avenger, Scythe and WeedPharm were applied at 1X and 2X rates. Synthetic herbicides – Glyphosate, 2,4-D and Indaziflam were applied at 1X, 2X and 3X rates. Control set without any herbicide application was included as well. Percent of substrate surface covered by liverwort thalli was visually estimated bi-weekly until 16 weeks after first treatment. Fresh biomass of the thalli in each pot were also recorded at the end of the experiment. The experiment had six replications per treatment, and they were arranged in a randomized complete block design. For both the synthetic and organic herbicides, there was significant interaction between the type and rate of herbicide applied. The herbicide treatments were significantly different amongst each other and from the control. Out of various organic herbicides applied, all the herbicide treatments were able to limit liverwort coverage under 30% as compared to control (98%). WeedPharm and Scythe application at 2X and Avenger application at 1X rates recorded minimum liverwort fresh biomass. In the synthetic herbicide treatments, Indaziflam at 2X and 3X rates had minimal liverwort coverage and fresh biomass at the end of the experiment. Hence, these organic and synthetic herbicides can be a promising component for an integrated liverwort control program in containerized ornamental production.
Speakers
MS

Manjot Sidhu

Michigan State University
Co-authors
DS

Debalina Saha

Michigan State University
Thursday September 26, 2024 1:00pm - 1:10pm HST
South Pacific 2

1:10pm HST

WCPM 2 - Impact of Changing Climate on Weed Control in Ornamental Crop Production: A Potential Research Area
Thursday September 26, 2024 1:10pm - 1:20pm HST
The ornamental crop industry is a billion-dollar industry in the United States. Controlling weeds is a big challenge, as they can compete with ornamentals for soil, nutrients, water, light, and space by affecting the desired quality of ornamental crops like leaf and flower quality and color as well as proper growth. Weeds can also harbor insects, pests, diseases, and pathogens resulting in further reduction of market value. Due to greater genetic diversity and physiological plasticity, weeds are more likely to be able to adapt to a changing environment or climate. Increased atmospheric carbon dioxide (CO2) level can cause fertilization effect in C3 plants resulting in higher growth rates. Conversely, C4 plants are less likely to exhibit increased growth responses to elevated CO2 levels, as carbon dioxide fixation becomes saturated for them at around 360 ppm. So, ornamentals could gain a competitive advantage over many of the major weed species under elevated CO2, as many of the world’s ornamental crop species are C3 plants and many of the major weed species are C4 plants. But in reality, the scenario is different because other factors such as changes in herbicide efficacy and the ability of weed species to out compete ornamental species may come into play and limit this advantage. Plants that are grown in CO2-enriched environments often develop high concentrations of starch in leaves and greater total leaf area and biomass which can cause a dilution effect on herbicides. Additionally, C3 plants have been shown to have decreased stomatal conductance and increased leaf thickness in elevated CO2 which may also limit foliar uptake of herbicides. Environmental factors such as temperature, precipitation and relative humidity influence the efficacy of herbicides. There are studies that have reported decreased herbicide efficacy for control of annual and perennial weeds in elevated CO2 environments in agronomic crops. But limited information is available on how change in climate can affect herbicide efficacies in ornamental production. Hence, the objectives of this research proposal are: Evaluating increased temperature and CO2 levels on growth and reproduction of two different types of container-grown ornamentals; Determining effects of temperature and CO2 rise on preemergence herbicide performances for controlling C3 and C4 weed species; Determining effects of temperature and CO2 rise on postemergence herbicide performances for controlling C3 and C4 weed species; Assessing adaptive features of weed species with the change in environmental factors.
Speakers
SS

Supti Saha Mou

Michigan State Univ.
Co-authors
DS

Debalina Saha

Michigan State University
Thursday September 26, 2024 1:10pm - 1:20pm HST
South Pacific 2

1:20pm HST

WCPM 2 - Development of “EZA”, a New Pesticide Suitable for Organic Production of Horticultural Crops
Thursday September 26, 2024 1:20pm - 1:30pm HST
Production of economically important horticultural crops in the world, especially in developing countries, is faced with major challenges, including pests, and diseases. As a result, producers rely heavily on excessive use of synthetic pesticides, which often leads to negative impact to the environment, human health, and pesticide resistance. There is a need to develop environmentally friendly products to manage pests and diseases to increase crop yield, quality, and nutrition. Research was conducted in Rwanda to develop “EZA”, a new pesticide acting as an insect repellent, made of essential oils from local invasive plants such as Lantana camara, Tagetes minuta, and wastes of chili pepper and garlic. EZA was tested on tomatoes and mangoes under field conditions to manage several insect pests, including armyworms, fruit flies, thrips, and diseases such as tomato late blight caused by Phytophthora infestans. Results showed that EZA was effective in controlling insect pests, providing control of thrips and tomato late blight at the rate of 90% on 5 tomato plants where applied. Furthermore, tomato yield was increased by 40%. Information from this study demonstrates that EZA could significantly benefit horticultural crop producers, especially smallholder farmers in developing countries such as Rwanda, to effectively manage insect pests and diseases and the increase of crop yield.
Speakers
MU

Merci Uwimbabazi

Kentucky State University
NA
Thursday September 26, 2024 1:20pm - 1:30pm HST
South Pacific 2

1:30pm HST

WCPM 2 - Impact of Partial Saltwater Agroecosystems on Weed Competition in Watermelon
Thursday September 26, 2024 1:30pm - 1:40pm HST
The issue of soil salinity as a major cause of poor soil health and crop yield loss has been of growing concern as climate change contributes to its effects. The objective of this research was to study the impact of increasingly saline soils on the relationship between grafted watermelons and yellow nutsedge, one of the major weeds in watermelon plasticulture. The seedless watermelon cultivar Melody was grown in a field after being grafted onto the C. maxima hybrid Carnivor and the C. amarus cultivar Carolina Strongback in addition to both a self-grafted and ungrafted control. The field was divided into four rows, which were irrigated with 0, 10%, 20%, and 30% dilutions of sea water for the duration of the experiment. A weed count was performed after one month and three months of irrigation. This demonstrated that salt had a significant effect on the total weed count at high concentrations, however the weeds demonstrated a much greater resistance to salt treatment than the watermelons in this trial. Based on this data, it is possible that salt intrusion events can contribute to increased weed related yield loss in watermelon crops.
Speakers
JB

Joseph Bazzle

Clemson University
Co-authors
BW

Brian Ward

Clemson University
MC

Matthew Cutulle

Clemson University
SB

Sandra Branham

Clemson University
NA
Thursday September 26, 2024 1:30pm - 1:40pm HST
South Pacific 2
 


Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
  • Career and Professional Development
  • Colloquium
  • Competitions
  • General - Registration/Speaker Center /etc.
  • Hort Theater & Collaboration Center
  • Interactive Workshop
  • Interest Group Session
  • Keynotes and Featured Sessions
  • Meals and Tours
  • Meetings - Committee/Division/interest Group
  • Oral presentation (Individual talk)
  • Oral Sessions
  • Poster presentation (individual talk)
  • Poster Session
  • Reception
  • Ticketed Events