Loading…
Coral 2 clear filter
Monday, September 23
 

2:00pm HST

Find Out How to Maximize Your Conference Ride - Student/First Time Attendee Welcome
Monday September 23, 2024 2:00pm - 2:45pm HST
Student/First Time Attendee Welcome: Conference Overview Session
This session will provide the essential information for how to get the most out of your attendance at the ASHS Annual Conference. Specific events, sessions, and competitions will be explained. ASHS staff and volunteers will be on hand to make sure that you are aware of all that ASHS and specifically the ASHS Conference has to offer.
Speakers
Monday September 23, 2024 2:00pm - 2:45pm HST
Coral 2

2:45pm HST

Surfing Your Way to Interview Success: Workshop 1
Monday September 23, 2024 2:45pm - 3:30pm HST
In this segment on interview techniques, we'll equip students and early career professionals with the knowledge and skills to excel in diverse interview formats reflective of the evolving landscape of employment practices. From traditional in-person interviews to virtual and competency-based assessments, we'll explore the nuances of each format and provide strategies for success. As employers adapt their interviewing methods to accommodate remote work and technological advancements, candidates must stay informed and adaptable. We'll delve into the intricacies of virtual interviews, offering guidance on presenting oneself effectively through digital platforms and navigating potential technical challenges. Additionally, we'll address the growing prevalence of competency-based interviews, where candidates are evaluated based on specific skills and experiences. By mastering these various interview formats, students will be well-prepared to showcase their qualifications and secure opportunities in today's dynamic job market.
Moderator
Monday September 23, 2024 2:45pm - 3:30pm HST
Coral 2

3:30pm HST

Riding with the Big Kahunas: A Panel Discussion: Workshop 2
Monday September 23, 2024 3:30pm - 4:00pm HST
In our panel discussion, we're bringing together professionals from diverse sectors—academia, government, and industry—to offer invaluable insights and guidance to students and early career professionals navigating their career paths. With representatives from each sector, attendees will have the opportunity to gain a comprehensive understanding of the different career trajectories available to them and the unique challenges and opportunities associated with each. Our panelists will not only address common questions about job applications, interviews, and career advancement but also offer firsthand perspectives on industry trends, academic research opportunities, and government initiatives. Whether you're considering a career in academia, government, or industry—or exploring the intersections between these sectors—our panelists will provide valuable advice to help you make informed decisions and chart a successful career path. Bring your questions, whether they're about job applications, industry trends, or strategies for career growth, and gain valuable insights from our diverse panel of experts.
Moderator Speakers
FK

Fernanda Krupek

Ohio State University
LT

Lisa Tang

USDA-ARS Appalachian Fruit Research Station

Monday September 23, 2024 3:30pm - 4:00pm HST
Coral 2

4:30pm HST

Moderator Training Session (Session will be repeated again on Tuesday morning)
Monday September 23, 2024 4:30pm - 5:00pm HST
Monday September 23, 2024 4:30pm - 5:00pm HST
Coral 2
 
Tuesday, September 24
 

7:00am HST

Moderator Training Session (Repeat of Monday's session)
Tuesday September 24, 2024 7:00am - 8:00am HST
Tuesday September 24, 2024 7:00am - 8:00am HST
Coral 2

10:00am HST

Workshop: Specialty Crop Community Databases and Breeding Data Management Tools
Tuesday September 24, 2024 10:00am - 12:00pm HST
In this interactive workshop, participants will be provided training on how to use Rosaceae (GDR, www.rosaceae.org), Vaccinium (GDV, www.vaccinoum.org) and Citrus (www.citrusgenomedb.org) specialty crop databases resources, as well as the Breeding Data Management tools, BIMS (www.breedwithbims.org), and the Field Book App for phenotype data collection. Using a case-study approach we will focus on how to use these integrated resources most efficiently for research and crop improvement efforts, how to apply FAIR data principles to sharing and submitting research data to these databases at the time of publication and facilitate a robust dialogue between researcher, breeders and the development team on needed improvements and long-term sustainability options for these resources.

This interactive workshop will bring together researchers and breeders to accelerate research and crop improvement in specialty crops. It will provide training and feedback on how to most effectively use the NIFA SCRI and National Research Support project 10 (NRSP10) funded Rosaceae, Citrus, and Vaccinium specialty crop databases and breeding data management resources (BIMS and Field Book), learn how to follow FAIR data principles, foster better two-way communication for increased feedback from researchers on further development of these resources, and continue to build a robust community around these research and crop improvement tools. The trainers include users and developers of these resources, ranging from early career to well-known and respected research enabling resource generators.

The Genome Database for Rosaceae (GDR), Genome Database for Vaccinium, and Citrus Genome Database (CGD) offer critical resources and tools to enable genomic, genetic, and breeding research for fruit, nut, and ornamental crops of great economic importance to the U.S. In addition, BIMS (BreedwithBIMS.org) and the Field Book APP provide widely used tools for managing plant breeding program data. While these resources are heavily used worldwide, many researchers are unaware of the full potential of using them and how they can contribute their own data for wider recognition and reuse. This interactive workshop aims to bridge this knowledge gap by providing hands-on training for specialty crop researchers on how to best use these resources and contribute their data. The workshop will also solicit ideas from participants on how to improve these databases and discuss the various options to make them sustainable in the long term. The workshop will bolster the utilization of integrated big data, promote future data sharing, and ensure that data is FAIR (Findable, Accessible, Interoperable, and Reusable).

The workshop aims to bring together researchers to accelerate research by more effective use of specialty crop databases and breeding data management resources, encouraging data submission at the time of publication, and gaining feedback from researchers. Through hands-on training, participants will become more familiar with the database resources and breeding data management tools, learn how to submit their data, and provide essential input for improving these databases and their long-term sustainability.

Coordinator(s)
  • Dorrie Main, Washington State University, Pullman, WA, United States
Moderator(s)
  • Cameron Peace, Washington State University, Horticulture, Pullman, WA, United States

Speaker/Participant(s)
  • Dorrie Main, Washington State University, Pullman, WA, United States
Introduction to the Workshop and Specialty Crop Research Databases (15 mins)

  • Jodi Humann, Washington State University, Horticulture, Pullman, WA, United States
How to efficiently use integrated genomics data and tools for research (20 mins)

  • Sook Jung, Washington State University, Horticulture, Pullman, WA, United States
    How to efficiently use integrated genetics data and tools for research (20 mins)

  • Nahla Bassil, USDA ARS, National Clonal Germplasm Repository, Corvallis, OR, United States
    How to efficiently use integrated germplasm and genotype data for research (15 mins)
    Summary:

  • Trevor Rife, Clemson University, Plant and Environmental Sciences Department, Florence, SC, United States
    How to use the Field Book App for phenotypic data collection (15 mins)
  • Sushan Ru, Auburn University, Auburn, United States
    How to use the Breeding Information Management System, BIMS, for Crop Improvement (20 mins)
  • Cameron Peace, Washington State University, Horticulture, Pullman, WA, United States


Moderator
CP

Cameron Peace

Washington State University
Speakers
avatar for Dorrie Main

Dorrie Main

Professor, Washington State University
I am a member of the Pullman Charter School Initiative team and am particularly interested in how to set up and maintain a thriving Washington State Charter School to serve the needs of Eastern Washington students.
SR

Sushan Ru

Auburn University
JH

Jodi Humann

Washington State University
Tuesday September 24, 2024 10:00am - 12:00pm HST
Coral 2

12:29pm HST

Pomology 1 (POM 1)
Tuesday September 24, 2024 12:29pm - 1:20pm HST
Consumer Preference and Willingness-to-Pay for Pawpaw Value-Added Products - Sheri Crabtree
Promising Advanced Selections from Kentucky State University’s Pawpaw (Asimina triloba) Breeding Program. - Jeremy Lowe
Assessment of Fruit Quality and Value-added Potential of 16 Pawpaw Cultivars and Advanced Selections - Kirk Pomper
Effects of Temperature and Light on Sunburn, and Preventing the Sunburn Damage by Chemical Suppressants in ‘Fuyu’ Sweet Persimmons - Yunji Shin
Crown Gall Associated with Higher Risk of New Butt Rot Pathogen in California Almond Orchards - Raymond Mireles

Moderator
KP

Kirk Pomper

Dean College of Agriculture, Kentucky State University
Tuesday September 24, 2024 12:29pm - 1:20pm HST
Coral 2

12:30pm HST

POM 1 - Consumer Preference and Willingness-to-Pay for Pawpaw Value-Added Products
Tuesday September 24, 2024 12:30pm - 12:40pm HST
The North American pawpaw (Asimina triloba) is the largest edible tree fruit native to North America, with a flavor resembling a unique tropical-like blend of mango and banana. Commercial production and consumer interest in pawpaw is on the rise in the US and worldwide. Fresh pawpaw fruit has a short shelf life and does not store or ship well. Value-added products represent a great potential market to both diversify offerings of products containing pawpaw, and provide shelf-stable products that could be available year-round and circumvent the storage and shipping challenges of fresh fruit. Pawpaws can be utilized in many value-added products, including ice cream, yogurt, jam, custard, baked goods, hot sauces, wine, beer, and brandy. A pawpaw value-added product tasting was conducted in September 2023 at the Kentucky State University Research and Demonstration Farm as part of the annual Pawpaw Third Thursday Thing workshop. Participants tasted samples of slices of fresh pawpaw fruit of six varieties, pawpaw jam on crackers, and pawpaw ice cream. A survey was conducted evaluating preference and interest in purchasing pawpaw fruit, jam, and ice cream, and willingness to pay. The survey found that 93% of participants would be interested in purchasing pawpaw fruit at a farmers market, compared to 80% at a grocery store and 88% at an on-farm market or roadside stand. Ninety-five percent (95%) of participants would be interested in purchasing pawpaw jam if available in stores, and 95% of participants would also be interested in purchasing pawpaw ice cream if available in stores. Respondents would be willing to pay $2.20 per fruit, or $4.97 per pound for fresh pawpaw fruit. Respondents reported they would pay $7.22 for an 8 ounce jar of pawpaw jam, and $8.51 for a quart of pawpaw ice cream. Currently, pawpaw ice cream and jam are sold by very few retailers in specialty markets, so there is great opportunity for pawpaw producers to introduce high-value pawpaw products that are desired by consumers to their retail markets.
Speakers
SC

Sheri Crabtree

Horticulture Research and Extension Associate, Kentucky State University
Co-authors
JL

Jeremy Lowe

Kentucky State University
JN

Joni Nelson

Kentucky STate University
KP

Kirk Pomper

Kentucky State University
Dr. Kirk W. Pomper is the Professor of Horticulture in the College of Agriculture, Community, and the Sciences at Kentucky State University in Frankfort, Kentucky. As Horticulture Research Leader, his program is focused on research and Extension efforts toward developing pawpaw as... Read More →
MB

Matthew Behrends

Kentucky State University
Tuesday September 24, 2024 12:30pm - 12:40pm HST
Coral 2

12:40pm HST

POM 1 - Promising Advanced Selections from Kentucky State University’s Pawpaw (Asimina triloba) Breeding Program.
Tuesday September 24, 2024 12:40pm - 12:50pm HST
The North American Pawpaw (Asimina triloba) is a tree fruit native to the Eastern U.S. which is being produced in commercial orchards across the U.S. and internationally, with an increasing market and interest. There are approximately 50 pawpaw cultivars available, but many of these varieties have low yields with fruit sizes below the threshold of 120 grams needed for commercial sale and processing. New high yielding cultivars with excellent fruit quality would further assist in the development of the pawpaw industry. Kentucky State University serves as the National Clonal Germplasm Repository for Pawpaw. Two goals of the Repository research efforts are germplasm acquisition and evaluation. The repository contains over 2000 accessions from 16 different states; additionally, both open pollinated seedlings from superior genotypes and crosses of superior selections have been incorporated into the repository collection. Fruit weights from three of KSU’s advanced selections (Hi 1-4, Hi 7-1, and G6-120) were compared to the cultivars ‘KSU-Atwood’, ‘KSU-Benson’, ‘KSU-Chappell’, ‘Ralph’s Whopper’, and ‘Sunflower’. Fruit weights for Hi 1-4 (241.5 g) and Hi 7-1 (233.5 g) were significantly larger than ‘Sunflower’ (145.3 g). Hi 1-4 and Hi 7-1 show potential to be promising new releases and have been budded onto seedling rootstock for further evaluation.
Speakers
JL

Jeremy Lowe

Kentucky State University
Co-authors
KB

Kirie Broberg

Kentucky State University
NA
KP

Kirk Pomper

Kentucky State University
Dr. Kirk W. Pomper is the Professor of Horticulture in the College of Agriculture, Community, and the Sciences at Kentucky State University in Frankfort, Kentucky. As Horticulture Research Leader, his program is focused on research and Extension efforts toward developing pawpaw as... Read More →
SC

Sheri Crabtree

Kentucky State University
Tuesday September 24, 2024 12:40pm - 12:50pm HST
Coral 2

12:50pm HST

POM 1 - Assessment of Fruit Quality and Value-added Potential of 16 Pawpaw Cultivars and Advanced Selections
Tuesday September 24, 2024 12:50pm - 1:00pm HST
The North American pawpaw [Asimina triloba (L.) Dunal] is a native tree-fruit that is in the early stages of commercial production in the United States. Pawpaw fruit have fresh market appeal for farmers markets, community supported agriculture, and organic markets, as well as processing potential for frozen pulp production. For the processing market, fruit with a large size of over 120 grams and less than 6 percent seed by weight, are desirable for processing for pulp recovery for value-added products such as hot sauce. Kentucky State University has already released three pawpaw cultivars, KSU-AtwoodTM in 2009, KSU-BensonTM in 2016, and KSU-ChappellTM in 2018. However, new high yielding cultivars with excellent fruit quality would further assist in the development of the pawpaw industry. The objective of this study was to determine the fruit quality of 16 pawpaw cultivars and advanced selections. Fruit weight, percent seed, and brix were determined for the cultivars and advanced selections grown at the Kentucky State University Research and Demonstration Farm in Frankfort, Kentucky. The cultivars and advanced selections evaluated were A3-1, A6-1, KSU-AtwoodTM, KSU-BensonTM, KSU-ChappellTM, G4-25, G6-120, G9-109, Hi 1-4, Hi 7-1, Hy3-120, NRVT 3-10, NRVT 3-4, Sunflower, Susquehanna, and Tallahatchie. Average fruit weight ranged from Tallahatchie at 138g to A-6-1 at 277g per fruit. A number of advanced selections had large fruit size and these included A6-1 (277g), Hy3-120 (258g), A3-1 (216g), Hi1-4 (214g), NRVT3-4 (208g), Hi7-1 (202g) and G9-109 (201g). Average percent seed for fruit ranged from G6-120 at 8.2 percent seed to the cultivar KSU-ChappellTM at 4.5 percent seed. A number of advanced selections had low percent seed and these included A6-1 (4.7%) and G4-25 (5.8%). Average percent Brix for fruit ranged from NRVT 3-10 at 19.8 Brix to the cultivar KSU-ChappellTM at 28.2 Brix. Many of these advanced selections show promise as potential new cultivars. Examples of hot sauce made from pawpaw pulp extracted from cultivars will be discussed.
Speakers
KP

Kirk Pomper

Dean College of Agriculture, Kentucky State University
Co-authors
JL

Jeremy Lowe

Kentucky State University
KB

Kirie Broberg

Kentucky State University
NA
MB

Matthew Behrends

Kentucky State University
SC

Sheri Crabtree

Kentucky State University
Tuesday September 24, 2024 12:50pm - 1:00pm HST
Coral 2

1:00pm HST

POM 1 - Effects of Temperature and Light on Sunburn, and Preventing the Sunburn Damage by Chemical Suppressants in ‘Fuyu’ Sweet Persimmons
Tuesday September 24, 2024 1:00pm - 1:10pm HST
As global warming progresses, sunburn damage in fruit production is becoming increasingly prevalent. However, there has not been much research on the patterns of sunburn occurrence and effective prevention measures for ‘Fuyu’ sweet persimmons. This pilot study explored the impact of strong light and high temperatures on sunburn occurrence in ‘Fuyu’ sweet persimmons, characterized the temporal pattern of sunburn development, and evaluated the efficacy of chemical suppressants in reducing damage. ‘Fuyu’ persimmons were harvested from an orchard in Jinju-si, Gyeongsangnam-do, South Korea, at 60 days (weak light intensity (WLI) conditions), 72 days (strong light intensity I (SLI-I) conditions), and 79 days (strong light intensity II (SLI-II) conditions) after full bloom. The harvested fruits were divided into five treatment groups: control (Distilled water), 2% Cellulose Nano Crystals (CNCs), 2% Sodium Alginate 300mM CaCl2 (AG), 6% Kaolin 0.1% Tween20 (K), and 2% Vapor Gard® (VG, transpiration inhibitor). Thermocouples were attached to each fruit to measure fruit surface temperature (FST) under the following conditions: WLI (using a chamber set to 200 µmol/m²/s light intensity) and SLI-I, -II (direct sunlight and temperature) conditions. When exposed to WLI conditions, the increase in fruit surface temperatures (FST) compared to air temperatures (AT) was minimal, and no sunburn was observed. Conversely, non-acclimated fruits exposed to SLI-I displayed extensive sunburn damage within a day. However, acclimated fruits under SLI-II revealed differences in sunburn. The kaolin treatment, which exhibited the lowest browning, also showed a significant reduction in FST. However, the carotenoid content was lower in the kaolin treatment compared to the control. To confirm the findings from controlled experiments, field trials were conducted for two years to evaluate the effectiveness of sunburn suppressants. In the first year, kaolin treatment reduced the severity of sunburn by half compared to other chemical suppressants. In the second year, 6% kaolin and a mixture of kaolin and carnauba wax were applied. Both kaolin and a kaolin-carnauba wax mixture effectively reduced sunburn to 30% of the control. These effective treatments decreased FST by up to 3.5℃, maintained high chlorophyll content, and augmented antioxidant enzyme activities. In conclusion, the kaolin treatment combined with carnauba wax was identified as the most promising material for preventing sunburn damage in ‘Fuyu’ persimmons under these environmental circumstances.
Speakers
YS

YUNJI SHIN

Gyeongsang National University
NA
Co-authors
HS

HYUNSUK SHIN

Gyeongsang National University
PM

PANDIYAN MUTHURAMALINGAM

Gyeongsang National University
NA
YP

YEONJU PARK

Gyeongsang National University
NA
Tuesday September 24, 2024 1:00pm - 1:10pm HST
Coral 2

1:10pm HST

POM 1 - Crown Gall Associated with Higher Risk of New Butt Rot Pathogen in California Almond Orchards
Tuesday September 24, 2024 1:10pm - 1:20pm HST
The wood decay fungus, Ganoderma adspersum, with no prior record in North America has emerged as a pathogen of almond in the San Joaquin Valley within the past decade. Incidence of the disease appears highest in orchards on ‘Nemaguard’ rootstock with high levels of crown gall, a bacterial disease caused by Agrobacterium tumefaciens. The putative association of G. adspersum with crown gall has been hypothesized, but not formally evaluated in the field. In February 2024, over 6,000 trees were surveyed across two orchards and rated for incidence of each disease. Both orchards were on ‘Nemaguard’ rootstock and included ‘Nonpareil,’ ‘Monterey,’ and ‘Fritz’ varieties. Results of Chi-square test for binomial ratings of two categorical variables indicate a significant association between G. adspersum and crown gall infection on all varieties in both orchards. Furthermore, when the variables were fitted using the generalized linear mixed model, infection with G. adspersum (independent variable) was found to have a significant effect on the association (response variable) for ‘Nonpareil’ variety at one site. For each unit increase in the incidence of crown gall, the probability of infection with G. adspersum increased by more than 1×109 fold on ‘Fritz’ and ‘Monterey’ at both sites, and ‘Nonpareil’ at one site, and by more than 87-fold on ‘Nonpareil’ at the second site. The results support the hypothesis that crown gall predisposes almonds to infection by G. adspersum. Further studies are needed to address the mechanism by which crown gall infection predisposes almond to G. adspersum with the long-term goal of improving the economic lifespan of California almond orchards.
Speakers
avatar for Raymond Mireles

Raymond Mireles

University of California Cooperative Extension
Co-authors
Tuesday September 24, 2024 1:10pm - 1:20pm HST
Coral 2

1:45pm HST

Workshop: Mediating Tropical Plant Pathology Challenges Across a Range of Crops and Diseases in Hawaii
Tuesday September 24, 2024 1:45pm - 3:45pm HST
Tropical crops have a tremendous impact on global food systems and are well represented in Hawaii. There are many different diseases (bacterial/viral/fungal) that can impact yields. In this session, we invite an audience from a broad pool of research interests and backgrounds to attend and learn about a range of food and forestry crops that are important in Hawaii, including papaya, sweetpotato, the native koa tree and banana and the production systems unique to these crops. The wide range of crops from tuber, to fruit, to forestry has led to a variety of challenges that have attracted less attention compared to pathology problems associated with temperate crops. Topic presentations in these areas will be presented by and from the perspective of university, non-profit, and USDA ARS researchers and a local commercial grower and will be followed by a panel discussion aimed at highlighting the many different techniques that have been used to overcome these challenges and how they are relevant to the broader agricultural research and commercial production sectors. Through these facilitated topic discussions, we hope to convey the scope of tropical diseases that occur as well as how to overcome them given different crop-specific constraints and their relevance to climate change.

The goal of the workshop is attract and engage a wide audience both outside as well as those working in tropical horticulture and to educate and bring together different perspectives of university and federal scientists, extension educators, graduate students, post-docs and industry on the current status of pathology problems that occur in various tropical crops in Hawaii. The workshop will discuss the approach and options used in different specialty crops to address the multitude of pathogens that threaten tropical crop production, the importance of germplasm collections, and successful strategies for the future in the face of global climate change. Information and exchange through panel discussion from presenters supporting agriculture and the public representing different entities including various research organizations and a producer, will highlight contributions from the different sectors and their unique and common perspectives and cross synergies. Through these talks and discussions, we hope to convey the scope of tropical diseases that occur as well as how to overcome them given different crop-specific constraints. We aim to highlight these successful strategies and their relevance to a broader sector of agriculture and to future research on emerging problems impacting temperate and other regions due to climate change.

Coordinator(s)

Jon Suzuki, USDA ARS DKI U.S. PBARC, Hilo, HI, United States

​​​​Participants:

Dr. Nathan Fumia (HARC - Hawaii Agricultural Research Center) – Understanding the role of selection on fungal disease tolerance in Acacia koa, an endemic Hawaiian hardwood (8 minutes). 
A common occurrence during neo-domestication is the interplay of traits such as seedling vigor and disease resistance. The focus of this study is the effect of crossing on a wild species being selected for a domesticated form, including decisions such as number of parents, number of crosses, and number of progeny.  Our aim is to begin breeding scheme development for wild species (neo-domestication) using Acacia koa as a novel study system. Breeding population size was changed in the koa orchard through thinning of individuals, a form of pollen control in the population, with the major criterion being a low durability of resistance where trees succumb to disease over time, caused by Fusarium oxysporum. This is an opportunity for insight during the development of expectations in population improvement through augmented crossing parameters, informing situational changes through breeding cycles in neo-domestication programs.
Dr. Anna McCormick (University of Hawaii at Manoa) – Examining viral presence in collections of Hawaiian heirloom sweetpotato varieties (8 minutes). 
Sweetpotato has been a staple crop in the Hawaiian Islands since Polynesians settled the islands ~1,200 years ago. Previous work has established that Hawaiian Heirloom sweet potato varieties represent unique germplasm that are more closely related to each other than varieties from other parts of the world. While much work has been done characterizing Hawaiian heirloom plant genetics, much less work has been done characterizing viral genetic presence and diversity. In this study we explored viral presence across an extant collection of 70 Hawaiian heirloom varieties sourced from five different botanical collections over three Islands (O’ahu, Maui and Big Island Hawai’i). Samples were examined for the presence of four viruses from the family Potyviridae namely; Sweet potato virus G (SPVG), Sweet potato virus C (SPVC), Sweet potato virus 2 (SPV2), Sweet potato feathery mottle virus (SPFMV), and one from the family Geminiviridae; Sweet potato leaf curl virus (SPLCV). We found high levels of virus across all collections, including many instances of double and triple infections. These findings have large implications for conservation and local fresh markets.
Dr. Mark Shankle (Mississippi State University) – Research and discovery of best practices for U.S. sweetpotato clean foundation seed (CFS) programs. (8 minutes)
Sweetpotato is an important crop for the U.S. and worldwide.  Infection by viruses which accumulate over time in this and numerous other major perennial crops cause major yield losses annually.  The problems in sweet potato are being addressed through Sweetpotato CleanSEED, a multi-state, transdisciplinary funded research project funded by a USDA-NIFA-SCRI grant to develop strategies that improve sweetpotato crop health and yield through developing quality control standards for producing clean foundation seed, improved detection methods, identification of undiscovered viral diseases, and development of cultural practices for efficient clean foundation seed production in both the laboratory and greenhouse to reduce disease transmission in this clonally propagated crop.
Ryan Domingo (USDA ARS U.S Pacific Basin Agricultural Research Center) - Identifying Carica papaya cultivars demonstrating increased partial resistance towards Phytophthora palmivora utilizing a novel rapid phenotyping assay. (8 minutes)
Extensive production loss and mortality of Carica papaya is associated with Phytophthora palmivora in Hawaii and other papaya growing regions of the world. Currently there is no commercial papaya cultivar fully resistant against P. palmivora, however it is important to identify those that contain partial resistance reducing pathogen proliferation. This talk will explore a novel rapid phenotyping assay quantifying P. palmivora growth along papaya seedling stems comparing several genotypes within the USDA germplasm collection. Implications resulting from this study provides farmers, breeders and other stakeholders insight towards cultivars displaying increased partial tolerance towards P. palmivora.
Gabriel Sachter-Smith  (Hawaii Banana Source) - Maintaining commercial vitality of the banana industry through germplasm resources and strategies to mitigate disease (8 minutes).  
Bananas have been grown in Hawaii since the first waves of Pacific Islander migrations starting over 1000 years ago. Today, bananas represent one of the most widely consumed fresh produce items in Hawaii, despite a steady downward trend in local production since the introduction of Banana bunchy top virus (BBTV) in 1989. To date, no commercially viable cultivar with strong resistance to BBTV has been identified or created, and various ways to combat the virus used in other parts of the world have proved challenging to apply in Hawaii. However, the pressure of the virus and overall impact on a farm can be mitigated using a combination of cultur
Tuesday September 24, 2024 1:45pm - 3:45pm HST
Coral 2

4:00pm HST

Scholars Ignite
Tuesday September 24, 2024 4:00pm - 6:00pm HST
Competition Entry https://ashs.org/page/SIEntry

The Graduate Student Activities Committee hosts this competition to allow graduate students members (both MS and PhD) a fun and exciting way to communicate the impact of their research projects and scholarly activities.
Graduate students make compelling presentations in three minutes using no more than one single PowerPoint slide or visual aid. The purpose of the presentation is to generate awareness, stimulate thought, and inspire attendees to appreciate the breadth and depth of horticultural research and scholarly activities. Graduate students will meet other students and scientists, learn about an array of research topics and other creative and scholarly activities across ASHS, and most importantly have fun!

The competition is designed similar to other popular three to five minute thesis and research presentation events (e.g. Three minute thesis, ‘Ignite’ or Scholars’ Studio) occurring around the globe, and done especially well in Australia, British Columbia, and the University of Washington.

Winners will receive a cash award of $500, $250, and $100 for the top three places, respectively.
The winners are announced at the Student Awards Night.
Students must enter by the deadline of Sept 1st. 
Applicants may use only one Introductory Slide (using the ASHS provided template) and one Presentation Slide for a total of 2 slides. The Introductory Slide must follow the format of the template and include Title of Presentation (Calibri 44 bold), Student’s Name (Calibri 32 bold), Advisor(s) Name (Calibri 28) and Institution’s Name (Calibri 28). The Presentation Slide must be one single page without any animation. Students may use any color, background or font for their Presentation Slide but not for the Introductory Slide. Slides need to be in the 16:9 format. Both slides must be presented in 3 minutes. Once the student reaches the podium the timer will start and after 3 minutes we will move to the next student.
Download the 2024 Scholars Ignite PowerPoint Template here.
Submit PowerPoint and Transition Slide to: https://ashs.org/page/SIEntry

Tuesday September 24, 2024 4:00pm - 6:00pm HST
Coral 2
 
Wednesday, September 25
 

7:59am HST

Growth Chambers and Controlled Environments 2 (CE 2)
Wednesday September 25, 2024 7:59am - 10:00am HST
Will Increasing the Potassium to Nitrogen Ratio Benefit Hydroponic Strawberry Production? - Jonathan Ries
Impact of Diurnal Chilling on Vegetative and Floral Development of Strawberry (Fragaria x annanassa) cvs. ‘Albion’, ‘Chandler’, ‘Monterey’, ‘Sensation’ Tray Plants in a Controlled Environment - Michael Palmer
Utilizing Controlled Environment Agriculture to Enhance the Yield and Flavor of Strawberries - Nicholas Cooley
Impact Of Elevated CO2 And Two Daily Light Integrals on the Production Efficiency of Strawberry (Fragaria × ananassa ‘Monterey’) Daughter Plants - Samson Humphrey
Unraveling Strawberry Stock Plant Architecture, Morphology, and Tips’ Spatial Distribution under Three Photoperiods to Facilitate Future Propagation System Design: A Comparative Study on Monterey as a Long-day Cultivar - Moein Moosavi
Stratified Wood Substrates for Optimizing Growth of Greenhouse-Grown Strawberries and Blueberries - Brandan Shur
Effect of Light Intensity on Strawberry Runner Tips Propagated Indoors - Lian Duron
Characterizing the Growth, Morphology, Productivity, and Fruit Quality of Twenty-five Strawberry Cultivars in Vertical Farm Environment - Yiyun Lin
Moderator
YL

Yiyun Lin

The Ohio State University
Wednesday September 25, 2024 7:59am - 10:00am HST
Coral 2

8:00am HST

CE 2 - Will Increasing the Potassium to Nitrogen Ratio Benefit Hydroponic Strawberry Production?
Wednesday September 25, 2024 8:00am - 8:15am HST
Strawberries (Fragaria × ananassa) are increasingly being grown in hydroponic systems, where effective nutrient management is critical for optimizing crop production and yield. Among essential mineral nutrients, potassium is a key nutrient that affect fruit quality in many fruiting crops. This study investigated how potassium to nitrogen (K:N) ratios regulate strawberry growth and development in a deep-water culture hydroponic system. We hypothesized that increasing the K:N ratios would enhance vegetative growth, fruit yield, and fruit quality. Bare-root plants of strawberry ‘Monterey’ and ‘San Andreas’ were grown indoor under a 23 °C air temperature and an 18-h photoperiod with an extended photosynthetic photon flux density of 350 µmol∙m–2∙s–1. The N level was kept constant at 77 ppm, while the study tested K:N ratios ranging from 1.5:1 to 4:5:1. Three weeks after nutrient treatments, strawberry plants showed similar crown number, crown diameter, leaf number, leaf area, and shoot dry mass regardless of K:N ratios in both cultivars. Increasing K:N from 1.5:1 to 4.5:1 linearly increased the root dry mass of Monterey’ but not in ‘San Andreas’. During the fruit production, K:N ratios did not affect the total number of fruits or total fresh mass of fruits. However, there was a linear decrease in the diameter, length, and fresh mass of individual fruits with increasing K:N ratio from 1.5:1 to 4.5:1 in both 'Monterey' and 'San Andreas'. Additionally, increasing K:N ratio from 1.5:1 to 4.5:1 slightly increased total soluble solids in ‘San Andreas’, but led to a greater increase in titratable acidity compared to the increase in total soluble solids in both ‘Monterey’ and ‘San Andreas’. These results suggest that increasing K:N ratios from 1.5:1 to 4.5:1 has little beneficial effect on overall plant growth, fruit yield and fruit quality for hydroponic strawberry production in deep-water culture systems.
Speakers
JR

Jonathan Ries

Arizona State University
Co-authors
YP

Yujin Park

Arizona State University
Wednesday September 25, 2024 8:00am - 8:15am HST
Coral 2

8:15am HST

CE 2- Impact of Diurnal Chilling on Vegetative and Floral Development of Strawberry (Fragaria x annanassa) cvs. ‘Albion’, ‘Chandler’, ‘Monterey’, ‘Sensation’ Tray Plants in a Controlled Environment
Wednesday September 25, 2024 8:15am - 8:30am HST
In US open field nurseries, strawberry transplants for fruit production accumulate diurnal chilling hours (hours between -2 and 7°C) in the field prior to harvest and receive supplemental chilling as bare root plants in a cooler before being transplanted into a fruit production system. In nurseries in Northwestern Europe, tray plants are placed outside after rooting to accumulate diurnal chill hours and are moved into the cooler with leaves and substrate for supplemental chilling before being transplanted. The optimal amount of chilling varies among cultivars but is thought to contribute to a proper balance of vegetative vigor and floral development leading to best fruiting after transplanting into the production system. Climate change, labor cost and related issues cause problems in both nurseries and production. Therefore more and more growers and start-up companies venture into controlled environment production systems. Due to high cost, these systems require transplants that are optimally conditioned for early flowering. We evaluated the impact of diurnal chilling on vegetative and floral development of 250 cc strawberry tray plants in a controlled environment. 28 day old ‘Albion’, ‘Chandler’, ‘Monterey’, and ‘Sensation’ rooted daughter plants were moved into growth chambers where they received 0 (15°C 24 hours), 100 (4°C, 16°C), 250 (4°C, 19°C), or 450 (4°C, 24°C) chill hours over a six week period. Within each treatment, the same amount of chill hours were applied each day for the six week period. Among treatments, the non-chill temperature increased as the number of chill hours increased to ensure the same daily average temperature of 15°C. Chambers were fixed at 50% RH, 450 ppm CO2, 130-40 µmol m-2 s-1 for all treatments and a 12 hour photoperiod for ‘Chandler’ and ‘Sensation’ and a 16 hour photoperiod for ‘Albion’ and ‘Monterey’. After the treatment, all plants were dissected under the microscope to determine the number and development of floral meristems (flower mapping). Our results show that the plants in the 100 and 250 hour treatments produced more floral meristems and branch crowns than the 0 and 450 hour treatments across all cultivars. Additionally, in ‘Albion’ and ‘Monterey’, the plants of the 100 and 250 hour treatments had greater fresh mass and higher crown diameter than the plants in the 0 and 450 hour treatments. Finally, all cultivars except ‘Sensation’ had more flowers on plants in the 100 and 250 hour treatments than those of the 0 and 450 hour treatments.
Speakers
MP

Michael Palmer

North Carolina State University
Co-authors
MH

Mark Hoffmann

North Carolina State University
NA
Wednesday September 25, 2024 8:15am - 8:30am HST
Coral 2

8:30am HST

CE 2 - Utilizing Controlled Environment Agriculture to Enhance the Yield and Flavor of Strawberries
Wednesday September 25, 2024 8:30am - 8:45am HST
Presentation: Oral ASHS 2024 Keywords: CEA, greenhouse, Fragaria ×ananassa, temperature Utilizing Controlled Environment Agriculture to Enhance the Yield and Flavor of Strawberries Nicholas Cooley, Joshua Vanderweide, and Roberto Lopez In the U.S., strawberries (Fragaria ×ananassa) are the most popular berry fruit with a value of $2.8B. In 2022, strawberries experienced 12% growth in annual sales, with the majority of field production occurring in California and Florida. To meet consumer demand for flavorful, fresh, local, and year-round fresh strawberries, the industry is expanding controlled environment (CE) production of day-neutral (everbearing) cultivars in greenhouses and indoor farms. Within CEs, growers can potentially meet these demands through the manipulation of environmental parameters such as temperature, light, vapor pressure deficit, and carbon dioxide concentration. Despite the recent growth, CE growers are reporting low profitability. This imbalance of production and profitability stems from high energy costs, supra-optimal greenhouse temperatures during parts of the year, and low yield from the industry standard cultivar ‘Albion’. For producers to be considered profitable, they must reach an approximate annual yield of 15 kg∙m–2, which equates to a weekly yield of around 0.3 kg∙m–2. The objectives of our research are to 1) quantify the yield of other day-neutral cultivars in greenhouses; 2) determine how day and night temperature influence yield and fruit quality parameters; and 3) develop a model to predict the cardinal temperatures of each cultivar. Three cultivars, ‘Albion’, ‘Cabrillo’, and ‘Monterey’ were grown at day/ night temperatures (12 h/ 12 h) of 15/7, 18/10, 21/13, 24/16 or 27/19 °C, under a 16-h photoperiod, and a target DLI of 15 mol·m–2·d–1. Fruits were harvested three times weekly and at harvest, berry weight, diameter, color, shape, distortion, brix content, and flavor-related volatile organic concentrations were recorded. After 12 weeks of harvest, the highest average weekly yield was 0.17, 0.19, and 0.24 kg∙m–2 for ‘Albion’, ‘Cabrillo’ ‘Monterey’ at 18/10, 24/16, and 24/16 C, respectively. While the highest combined overall yield for all three cultivars was at 24/16 °C, the highest average berry weight differed. At day and night temperatures of 18/10, 18/10, and 15/7 °C, ‘Albion’, ‘Cabrillo’, and ‘Monterey had the highest average berry weights, respectively. Our results collectively indicate there are higher yielding day-neutral cultivars than the industry standard ‘Albion’.
Speakers
NC

Nicholas Cooley

Michigan State University
Wednesday September 25, 2024 8:30am - 8:45am HST
Coral 2

8:45am HST

CE 2 - Impact Of Elevated CO2 And Two Daily Light Integrals on the Production Efficiency of Strawberry (Fragaria × ananassa ‘Monterey’) Daughter Plants
Wednesday September 25, 2024 8:45am - 9:00am HST
Abstract: Strawberry nurseries face many challenges, and are considering controlled environment propagation as an alternative to conventional open-field propagation. Limiting factors to economic feasibility include stock plant yield (number of daughters produced per stock plant). From published research we know that increasing CO2 concentration and light intensity increases strawberry photosynthetic rate, however there has been no research on the effects of these treatments on the total stock plant yield of daughters. Our hypothesis is that higher light intensity and CO2 concentrations will improve plant growth and lead to greater total daughter plant production. The objective of this experiment is to increase stock plant yield by increasing CO2 concentration (500, 850, and 1200 μmol mol-1) and light intensity (DLI 14.4 and 28.8 mol m-2 d-1). Strawberry (Fragaria × ananassa Duch., ‘Monterey’) stock plants were transplanted into three controlled environment growth chambers, under combinations of CO2 and DLI treatments in a split plot design under 26°C, 65% relative humidity, and a 16-hour photoperiod. The stock plants were grown under treatment conditions for 70 days, and newly-formed daughters were logged every day. At the end of the experiment the stock plants and their daughter plants were harvested, and each daughter plant was evaluated based on its size (number of leaves, leaf area, and fresh/dry mass). Increasing CO2 concentration linearly increased stock plant yield, leading to 23.96% more daughter plants per mother plant from the 500 to the 1200 μmol mol-1 treatment. Plants under higher light intensity (500 μmol m-2 s-1) had 38% higher stock plant yield than those under 250 μmol m-2 s-1. These data support our hypothesis that increasing CO2 concentration and light intensity increase the total yield of daughter plants produced per stock plant. By optimizing CO2 concentration and light intensity, strawberry nurseries may be able to grow more daughter plants more efficiently in controlled environment nurseries than in the conventional open-field system.
Speakers Co-authors
RH

Ricardo Hernandez

North Carolina State University
NA
Wednesday September 25, 2024 8:45am - 9:00am HST
Coral 2

9:00am HST

CE 2 - Unraveling Strawberry Stock Plant Architecture, Morphology, and Tips’ Spatial Distribution under Three Photoperiods to Facilitate Future Propagation System Design: A Comparative Study on Monterey as a Long-day Cultivar
Wednesday September 25, 2024 9:00am - 9:15am HST
The US strawberry industry needs healthy, high-quality transplants every year for fruit production. Following the challenges in open-field nurseries, research is focused on controlled-environment agriculture as a potential alternative to not only increase strawberry tip yield but also to produce healthier, virus-free transplants (rooted tips). Growing stock plants indoors where the runners grow vertically downward increases the yield and quality of tips, however, there is a lack of information on the general architecture of plants especially the spatial distribution of daughter plants and also the leaf area index (LAI) distribution of the daughter plants’ canopy in the growing space. This information is vital for future system design as it determines the distance between the shelves and the potential need for intracanopy lighting. Furthermore, besides temperature, photoperiod strongly affects the trade-off between runner Vs. flower production. Yet, there is also a lack of information on how photoperiod will change the yield, quality, and architecture of stock plants in CEA, specifically on long-day cultivars. Here, we examined 12, 16, and 20 h photoperiods with the same DLI of 26 mol m-2 d-1 on ‘Monterey’ as a long-day cultivar with two replications in time. The chamber environment was maintained at a high temperature of 26 °C, ambient CO2, and 65% relative humidity. The plant density was 9 plant m-2. Following 64 days of growth, parameters related to yield, architecture, and quality were recorded. Results showed that even under relatively high temperatures, with shortening the photoperiod, a linear increase in the number of tips was observed, increasing from ~36.3 to ~44.3 (18%) with the same DLI. Regardless of the photoperiod, the highest proportion of tips (30.8%) were harvested on the runners from 40 – 80 cm distance from the mother plant, though the highest LAI (53.2%) was recorded on the tips from 0 – 40 cm, causing a sudden drop (92.8%) in the light intensity after 40 cm where most of the tips are growing. This information shows the need for intracanopy lighting under 40 cm depth from the mother plants. Around 98% of the tips were harvested from 0 – 160 cm, showing the needed space for the growth of runners (i.e., the distance between the shelves). Several morphology and photosynthetic parameters were also recorded. The information from this study will be used as a base for a follow-up experiment comparing top versus intracanopy lighting.
Speakers
MM

Moein Moosavi

NC State University
https://www.linkedin.com/in/moein-moosavi-nezhad/
Co-authors
RH

Ricardo Hernandez

NC State University
NA
Wednesday September 25, 2024 9:00am - 9:15am HST
Coral 2

9:15am HST

CE 2 - Stratified Wood Substrates for Optimizing Growth of Greenhouse-Grown Strawberries and Blueberries
Wednesday September 25, 2024 9:15am - 9:30am HST
As the demand for locally grown produce, particularly fresh fruits like blueberries and strawberries, continues to surge, the imperative for year-round production becomes increasingly evident. While these fruits are globally recognized for their extended-season production potential in controlled environments, the intricate environmental factors crucial for improved production and profitability remain partially understood, including the impact of soilless substrates. Amid growing concerns about the availability of internationally sourced substrates, such as coconut coir, this study explores an alternative approach to reduce reliance on such components, particularly in the cultivation of two small fruits rapidly integrated into controlled environments. Substrate stratification, involving the vertical layering of substrates within a single container, has shown promise in nursery and greenhouse settings, enhancing resource efficiency in terms of water and fertilizer inputs. However, no research has assessed the application of stratified substrates for fruit crops with the specific aim of reducing coir inputs in greenhouse production. Thus, the objective of this study was to investigate whether stratifying coir over low-cost, hammer-milled processed tree fiber could effectively decrease coir usage, dependency, and associated costs within the controlled environment fruit production industry. 'Albion' strawberries and 'Star' blueberries were cultivated in five substrate treatments, ranging from 100% coir to various stratified layers beneath coir, including 25%, 50%, and 75% coir compositions, as well as a 100% processed tree fiber treatment. Results suggest that employing substrate stratification enhanced plant growth for both fruit crops, indicating its potential utility in optimizing controlled environment fruit production while reducing reliance on costly substrate materials like coir. Further analysis will elucidate the full implications of this innovative approach on production efficiency and profitability.
Speakers
BS

Brandan Shur

North Carolina State University
Co-authors
BJ

Brian Jackson

NC State
NA
Wednesday September 25, 2024 9:15am - 9:30am HST
Coral 2

9:30am HST

CE 2 - Effect of Light Intensity on Strawberry Runner Tips Propagated Indoors
Wednesday September 25, 2024 9:30am - 9:45am HST
Indoor propagation systems that use sole-source lighting in controlled environments can facilitate year-round production of disease-free, uniform strawberry liners. However, optimal conditions to propagate strawberry runner tips indoors are unknown. Runner tips of ‘Albion’ and ‘Fronteras’ strawberries were propagated indoors for 28 d under four photosynthetic photon flux density (PPFD) treatments: 75, 150, 225, or 300 ± 5 μmol·m–2·s–1 provided for 24 h·d–1 by white light-emitting diode fixtures. Runner tips were also propagated in a shaded greenhouse under mist. After propagation, plants were moved to a common greenhouse compartment and grown for 7 weeks to evaluate carryover effects on fruit yield (‘Albion’) or daughter-plant production (‘Fronteras’). Treatment responses were similar for both cultivars, except that shoot dry mass (DM) of ‘Fronteras’ followed a quadratic response with increasing PPFD, which peaked at 225 μmol·m–2·s–1. In contrast, shoot DM of ‘Albion’ linearly increased with increasing PPFD. Root DM of both cultivars also followed an increasing response with PPFD. However, there were no treatment differences in the number of shoots produced per plant or the length of the longest root. Interestingly, plants propagated under ≥150 μmol·m–2·s–1 had several dead shoots (up to 20%), likely attributed to plant stress. After the carryover phase, ‘Albion’ propagated under 225 or 300 μmol·m–2·s–1 were statistically different and produced the lowest fruit fresh mass compared to those grown in the greenhouse, whereas values were similar among plants propagated in the greenhouse or indoors under 75 or 150 μmol·m–2·s–1. No treatment differences were measured in the number of daughter plants produced by ‘Fronteras’. These findings suggest that although higher PPFD indoors promoted rooting and growth, plants propagated in the greenhouse were likely better adjusted to the dynamic greenhouse environment, which enabled them to reach the same growth and development of indoor-propagated plants at the end of the carryover phase.
Speakers
LD

Lian Duron

Purdue University
Wednesday September 25, 2024 9:30am - 9:45am HST
Coral 2

9:45am HST

CE 2 - Characterizing the Growth, Morphology, Productivity, and Fruit Quality of Twenty-five Strawberry Cultivars in Vertical Farm Environment
Wednesday September 25, 2024 9:45am - 10:00am HST
As the interest in strawberry production in controlled environment agriculture is ascending, the demand for cultivars that yield premium-quality fruit is rising. To identify strawberry suitable for vertical farm production, 25 strawberry (Fragaria × ananassa) cultivars were selected for premium flavor from USDA National Clonal Germplasm Repository. Fruit productivity and quality traits, plant vegetative phenotypes, and photosynthetic rates were evaluated using strawberries grown in a walk-in growth chamber where photoperiod altered between short day and long day to promote flowering and fruit production. Our results show that strawberry ‘Mara des Bois’ produced the earliest harvest, and ‘Hood’ had the highest maximum productivity coefficient. The largest fruit was produced by ‘Chandler’, and the reddest fruit was produced by ‘Marshall’. Among the 25 cultivars, 11 exhibited fruit Brix levels above 0.9, and 3 had a fruit Brix:TA ratio of 1.0. Ongoing fruit flavor analysis aims to identify unique flavor compounds within these strawberries. Correlations linked time to first harvest and maximum productivity coefficient with canopy area, shoot height, and photosynthetic rate per plant, revealing the intricate sink-source dynamics in strawberry plants. Interestingly, no correlation was found between maximum productivity coefficient and any fruit quality trait, challenging the commonly held belief in the constant competition between crop productivity and quality. The information of strawberry growth and production in vertical farm environment provided in this study can assist indoor growers in cultivar selection and potentially contribute to future strawberry breeding programs.
Speakers
YL

Yiyun Lin

The Ohio State University
Co-authors
CK

Changhyeon Kim

The Ohio State University
NA
CK

Chieri Kubota

The Ohio State University
NA
JO

Jim Oliphant

US Department of Agriculture
NA
MH

Michael Hardigan

US Department of Agriculture
NA
NB

Nahla Bassil

US Department of Agriculture
NA
Wednesday September 25, 2024 9:45am - 10:00am HST
Coral 2

10:15am HST

Workshop: Breeding for Post-harvest Shelf Life in Vegetable Crops
Wednesday September 25, 2024 10:15am - 12:15pm HST
Improved postharvest storage is a major target for vegetable-crop production. Nutritional contents and flavor are traits highly affected from harvesting to final consumption. Several reports have demonstrated that these traits are strong driving factors impacting consumers’ decisions and preferences when purchasing food. Therefore, these are economically important traits related to strong commercialization potential and improved market value. Assessing the potential variation in post-harvest shelf life among vegetable crops will be critical to identify parental lines that can be used in breeding programs to improve these traits and their effect on the quality of produce. Additionally, investigating the genetic mechanisms underlying post-harvest shelf life in horticultural crops is critical. This will result in the development of molecular breeding tools associated with improving shelf life, which will accelerate breeding. This interest group seeks to provide case studies from experts worldwide who have worked on breeding for nutritional contents, flavor, and post-harvest shelf life in vegetables.

Coordinator(s)
  • Carlos Avila, Texas A&M AgriLife Research, Weslaco, TX, United States
Moderator(s)
  • Dennis Nicuh Lozada, New Mexico State University, Plant and Environmental Sciences, Las Cruces, NM, United States
  • Devi Kandel, Langston University, United States
Speaker/Participant(s)
  • Carmit Ziv, Institute of Postharvest and Food Science, ARO, Volcani Institute, Israel
    Breeding for improved postharvest quality of peppers during cold storage (15 mins)
    Summary: Dr. Ziv's research program studies postharvest disease control of fruity vegetables by developing environment-friendly treatments to control postharvest fungal rot, understanding resistance mechanisms of phytopathogenic fungi to cold storage, uncovering the role of lipids in determining the interactions between fruits and pathogenic fungi during storage.
  • Carlos Avila, Texas A&M AgriLife Research, Weslaco, TX, United States
    Lack of locule gel increases post-harvest shelf-life and quality in tomato (15 mins)
    Summary: Dr. Avila's research program is focused on the development of tomato and spinach cultivars adapted to Texas conditions. Research work includes the characterization of plant a/biotic stress and vegetable quality trait regulation using molecular, physiological, and biochemical approaches to develop applied strategies to improve breeding efficiency and ultimately crop resistance and quality. Current efforts include the development of firm long shelf-life tomato cultivars with improved flavor and nutritional content.
  • Bhimu Patil, Texas A&M University, Vegetable and Fruit Improvement Center, College Station, Texas, United States
    Post-harvest shelf life and nutritional quality in horticultural crops (15 mins)
    Summary: Dr. Patil has been actively involved in both research and educational activities related to global level ‘Foods for Health’. His research, in collaboration with trans-disciplinary scientists, related to bioactive-derived assays led to isolation and characterization of certain bioactive compounds in citrus and turmeric and other vegetables. His research is also focused on pre and postharvest effects on bioactive compounds in citrus, onion and recently his work is focused on other vegetables and fruits.
  • Alexander Goldshmidt, Institute of Plant Sciences, ARO, Volcani Institute, Israel
    Exploring the Role of CLASS-II KNOX mediated Ripening Pathways for the Discovery of Novel Genetic Approaches to Extend Fruit Shelf Life (15 mins)
    Summary: Dr. Goldshmidt research is focused on investigation of the genetic factors and networks controlling development of the pericarp tissues in fruits of Solanaceae crops tomato and pepper. His lab seek to use their research to develop novel genetic solutions and tools to extend fruit's shelf life and improve its consumer attractiveness and nutritional values.
  • Barbara Blanco Ulate, UC Davis, United States
    Control of fruit ripening, improvement of fruit quality, and fruit-pathogen interactions. (15 mins)
    Summary: Dr. Blanco-Ulate's research program integrate systems biology approaches with biochemical and physiological analyses to study fruit development and quality traits, and to establish a novel framework for the early detection and efficient management of fruit diseases.





Wednesday September 25, 2024 10:15am - 12:15pm HST
Coral 2

12:29pm HST

Pomology 2/Horticultural Plant Reproductive Biology (POM 2/HPRB)
Wednesday September 25, 2024 12:29pm - 1:50pm HST
Mechanization Reduces Pruning and Harvest Labor Time in the Cider Apple Orchard - Carol Miles
Testing Agronomic Strategies to Reduce Biennial Bearing in Apples - Thiago Campbell
Identifying Local Apple Germplasm for Use of Hard Ciders in North Dakota - Wenhao Dai
The Fruitlet Size Distribution Model As A Thinning Decision Aid For Precision Crop Load Management Of Apple - Laura Hillmann
Deciphering the Proline-Mediated Flowering Delay Mechanism in Peach through Physiological and Metabolic Analyses - Hyunsuk Shin
Genetic Architecture of Important Traits for Prunus Crop Improvement - Michael Itam
Taste Acidity and Other Important Fruit Characteristics of New Peach Varieties Compared with Concurrent Varieties During 2022 and 2023 - Hemant Gohil
Role of Silicon in Peach Water Stress Tolerance - Noah Willsea
Moderator
TC

Thiago Campbell

Washington State University
Wednesday September 25, 2024 12:29pm - 1:50pm HST
Coral 2

12:30pm HST

POM 2 - Testing Agronomic Strategies to Reduce Biennial Bearing in Apples
Wednesday September 25, 2024 12:30pm - 12:40pm HST
Biennial bearing in tree fruit can be problematic, and these patterns are not unique to tree fruit and occur in natural species. Masting, or the abundant production of seeds in some years, can also be observed in natural tree species. Despite extensive research, biennial bearing still affects commercial orchard production. Biennial bearing cycles are costly, with inconsistent yields and fruit quality occurring yearly. Crop load management is one commonly used management strategy to control biennial beating. However, trees can continue a biennial cycle the year following adequate crop thinning. We evaluated six different agronomic strategies to combat biennial bearing in apple trees; two for low-cropping trees (“off” year) and four for high-cropping trees (“on” year). In 2023, ‘Honeycrisp’ trees on B.9, G.41, G.890, and M.9-T337 rootstocks in their high-cropping year were root pruned, girdled, sprayed with ethephon, or fertilized with nitrogen (ammonium nitrate) in the fall, along with untreated control. Trees in their low-cropping year (2023) were defoliated and sprayed with gibberellic acid (GA 3 ) and untreated control. Due to the limited availability of low-cropping trees in 2023, only ‘Honeycrisp’ trees on B.9 and M.9-T337 rootstocks were used. All treatments were applied two to three weeks after full bloom except for nitrogen fertilization, which was applied in late August. Crop load, vegetative growth, and fruit quality were measured for treated trees and controls. Carryover effects of treatments were calculated to quantify the reduction/amelioration of biennial bearing incidence. In low-cropped trees, GA 3 had significantly higher return bloom from controls and defoliated trees. In high-cropped trees, no treatment had a significant effect on return bloom compared to controls. Vegetative growth was not affected by any treatment. Effective agronomic strategies for managing biennial bearing can be inconsistent and need to be further investigated for their impacts.
Speakers
TC

Thiago Campbell

Washington State University
Co-authors
LK

Lee Kalcsits

Washington State University
NA
Wednesday September 25, 2024 12:30pm - 12:40pm HST
Coral 2

12:40pm HST

POM 2 - Identifying Local Apple Germplasm for Use of Hard Ciders in North Dakota
Wednesday September 25, 2024 12:40pm - 12:50pm HST
Hard cider is one of the fastest growing specialty beverages in the United States with an average annual retail sales of about $500 million in recent years. Cider apples refer to those that are specifically used for hard ciders (alcoholic) with unique traits, such as high acid, high tannin, and high total soluble solid that help ferment superior-quality hard ciders. In traditional hard cider production countries, hard ciders are made from cider-specific cultivars; however, hard ciders in the US are usually made from apples that were bred for fresh apple market because of inadequate fruit availability of cider-specific cultivars. In this study, apple germplasm grown at the NDSU Horticulture Research Farm near Amenia, ND (USDA hardiness zone 3-4a) was evaluated for the suitability of quality hard ciders. Specifically, four biochemical traits, total soluble solids (TSS), pH, titratable acidity (TA), and total phenolic compounds (TPC) that are the general attributes to the quality of hard ciders, were analyzed. Preliminary results showed that the average TSS was 15.75o Brix with the highest TSS reached 21.2o Brix. The fruit of some lines were very sour and tart indicating the high level of acidity and phenolics, which showed the great potential for quality hard cider production. The titratable acidity (malic acid) and total phenolic compounds in the apple juice of selected lines are being quantified. This research could identify local cider apple germplasm and provide apple growers and cider makers with the information on cultivar selections for quality hard cider production in ND and the surrounding region.
Speakers
WD

Wenhao Dai

North Dakota State University
Co-authors
BT

Brent Trela

Trelab
NA
MM

Mika Mzumara

North Dakota State University
NA
TS

Tian Sun

North Dakota State University
NA
ZJ

Zhao Jin

North Dakota State University
NA
Wednesday September 25, 2024 12:40pm - 12:50pm HST
Coral 2

12:50pm HST

POM 2 - The Fruitlet Size Distribution Model As A Thinning Decision Aid For Precision Crop Load Management Of Apple
Wednesday September 25, 2024 12:50pm - 1:00pm HST
Fruit quality of apple is heavily influenced by crop load management practices. During the developmental window between bloom and 15mm fruitlet diameter, the general commercial practice is to apply chemical thinners to reduce the initial crop load based on the cultivar and market. However, thinning success varies from year to year, depending on bloom density, thinner selection and dose, climatic factors, tree health and cultivar. Precision crop load models such as the pollen tube growth model, the MaluSim model, and the fruit growth rate model have improved thinning success; however, labor-intensive measures has hindered broad adoption of the latter model which effectively predicts fruit set following thinner application. To improve grower adoption, we developed an alternative, time-efficient fruit set prediction model. The model has been tested on multiple cultivars over a three-year period at four distinct apple production regions throughout the United States. Abscission probabilities and fruit set predictions are based on the distribution of fruitlet mass and confirmed by actual measures of fruit set. The model starts at 6 mm fruitlet diameter and accounts for all thinners up to this time. A prediction is returned in ~8 days to inform repeat thinner applications while fruitlets are still highly sensitive to thinners. A user-guide, digital balance that automatically exports fruit mass to a laptop/tablet, and a macro-enabled Excel spreadsheet file have been developed and are available to growers to increase the precision around crop load management.
Speakers
LH

Laura Hillmann

Michigan State University
Co-authors
SS

Sara Serra

Washington State University
NA
SM

Stefano Musacchi

Washington State University
NA
TR

Terence Robinson

Cornell University
NA
TE

Todd Einhorn

Michigan State University
NA
TK

Tom Kon

North Carolina State University
NA
Wednesday September 25, 2024 12:50pm - 1:00pm HST
Coral 2

1:00pm HST

POM 2 - Deciphering the Proline-Mediated Flowering Delay Mechanism in Peach through Physiological and Metabolic Analyses
Wednesday September 25, 2024 1:00pm - 1:10pm HST
Freezing temperatures can harm peaches in late spring with advanced flowering due to climate change and consequently reduce their yield. Flowering delay is a prominent strategy employed to avoid such spring frost damage. Our previous study demonstrated that treatment with 5% sodium alginate 100 mM CaCl 2 (5AG) can delay the blooming, potentially avoiding frost damage. To elucidate the precise mechanism of flowering delay induced by 5AG in peaches, this study systematically and experimentally analyzed the changes of amino acid profiles in control and 5AG-treated peach plants at different day intervals (0, 1, 2, 11, 21, 25, and 28 DAT). Our findings revealed that the levels of arginine (Arg), glutamate (Glu), and proline (Pro) differed significantly between control and 5AG- treated peach shoots throughout the phenological development of flower buds. Furthermore, Arg and Glu amino acids, are involved in the Pro pathway. Computational metabolomics analyses identified the Pro metabolism related genes and their attributes, gene ontology, gene synteny and gene organizations, which represent diverse biological function of these genes, including flowering responses. In addition, qRT-PCR analysis results revealed that elevated expression of P5CS and P5CR genes, involved in Pro metabolism, led to increased Pro content in control plants. Conversely, 5AG treatment downregulated these genes, resulting in lower proline content. This result suggests that 5AG treatment may restrain gene expression related to Pro accumulation, thereby controlling Pro biosynthesis. In addition, our findings unveiled a direct connection between Pro content reduction and delayed flowering. Taken together, these results provide strong evidence that 5AG treatment significantly delays flowering by controlling Pro metabolisms in Prunus persica.
Speakers
avatar for HYUNSUK SHIN

HYUNSUK SHIN

Gyeongsang National University
Co-authors
JH

JAE HOON JEONG

Gyeongsang National University
NA
MP

MUTHURAMALINGAM PANDIYAN

Gyeongsang National University
NA
SH

Seung Heui Kim

Korea National College of Agriculture and Fisheries
NA
YP

YEONJU PARK

Gyeongsang National University
NA
Wednesday September 25, 2024 1:00pm - 1:10pm HST
Coral 2

1:10pm HST

POM 2 - Genetic Architecture of Important Traits for Prunus Crop Improvement
Wednesday September 25, 2024 1:10pm - 1:20pm HST
Numerous QTL and GWAS studies have been conducted on various species of Prunus, but there is limited knowledge on the overall genetic architecture regulating fruit quality traits among these species. As part of a 2022-funded SCRI- project to advance database resources for specialty crop research, efforts are directed towards collecting and curating all types of big data in the Genome Database for Rosaceae (www.rosaceae.org). We conducted an extensive literature review on over 120 QTL and GWAS studies on Prunus traits to extend the existing data in GDR. We aligned the traits to the peach genome to compare important traits in various Prunus species. The consensus map showing QTL hotspots will be accessible using various tools in GDR. Implications of the newly created resources and tools in GDR for breeding will be discussed.
Speakers
MI

Michael Itam

Clemson University
Co-authors
CH

Chun Huai Cheng

Washington State University
NA
DM

Dorrie Main

Washington State University
JY

Jing Yu

Washington State University
NA
JH

Jodi Humann

Washington State University
KB

Katheryn Buble

Washington State University
NA
KG

Ksenija Gasic

Clemson University
PZ

Ping Zheng

Washington State University
NA
SJ

Sook Jung

Washington State University
NA
TL

Taein Lee

Washington State University
NA
Wednesday September 25, 2024 1:10pm - 1:20pm HST
Coral 2

1:20pm HST

POM 2 - Taste Acidity and Other Important Fruit Characteristics of New Peach Varieties Compared with Concurrent Varieties During
Wednesday September 25, 2024 1:20pm - 1:30pm HST
Three new peach varieties and ‘Felicia’ ‘Evelynn’ and ‘Anna Rose’ were recently released from the Rutgers University tree fruit breeding program. These varieties are concurrent with some of the standard peach varieties. The comparison of taste acidity and other important fruit characteristics could help growers choose in case of planting these varieties or replacing the standard varieties during the same harvest window. Fruit characteristics such as flesh color, crop load, shape, skin color, fuzz, attractiveness, stone characteristics (free, semi-free, or cling), flesh color, bacterial spot, on fruits and leaves, taste acidity, juice total soluble solids (TSS) concentration (°Brix), and total titratable acidity (TTA) (%) were measured. Here we compare these varieties to highlight the differences and challenges amongst these varieties on their path to full consumer appreciation. Results indicate that average TSS and firmness were higher in ‘Felicia’ (12.9 brix; 12.4 lb) and ‘Evelynn’ (11.9 brix; 10.9 lbs.) compared to ‘Redhaven’ (11.1 brix; 8.14 lbs.). Also; average TSS and firmness were higher in ‘Anna Rose’ (14.4 brix; 13.68 lbs.) compared to ‘Klondike’ (12.0 brix; 11.3 lbs.) and ‘White Lady’ (10.9 brix; 9.64 lbs.). In summary, new yellow-fleshed peach varieties ‘Felicia’ and ‘Evelynn’ have great potential to replace the old standard variety, ‘Redhaven’. Similarly, the new white-fleshed peach variety ‘Anna Rose’ has great potential to replace old standard varieties ‘White Lady’ and ‘Klondike’.
Speakers
HG

Hemant Gohil

Extension AgentII/Associate Professor, Rutgers Cooperative Extension
Co-authors
DW

Daniel Ward

Rutgers University
NA
Wednesday September 25, 2024 1:20pm - 1:30pm HST
Coral 2

1:30pm HST

POM 2 - Role of Silicon in Peach Water Stress Tolerance
Wednesday September 25, 2024 1:30pm - 1:40pm HST
Water stress in young fruit trees can reduce tree growth and impair future crop productivity. Silicon (Si) has shown a positive effect in mechanisms related to water relations, specifically water uptake and transport, as well as physiological and anatomical changes in leaves of annual plants. These findings suggest that Si could induce adaptive changes that could help trees cope with water deficit. The objective of this experiment was to evaluate the role of Si on water status, sap flow, and gas exchange of young peach trees under water deficit. Two-year-old ‘Julyprince’ peach trees grown under controlled conditions received either 100% (well-watered trees) or 50% (stressed trees) of their crop evapotranspiration needs three times a week. Once trees in the two treatments displayed a difference in water status, Si was applied weekly by foliar spray (0 or 20 mg L-1). The combination of these two factors resulted into a completely randomized factorial design with four treatments. Results showed an interaction between irrigation regime and Si application. Si increased sap flow in well-watered trees and reduced that of stressed trees, although this effect was more significant the day after irrigation. Furthermore, Si significantly improved the water status of trees under water deficit but did not influence that of well-watered trees. These results seem to indicate that the role of Si in improving tolerance to water deficit is temporary and dependent on the tree water status.
Speakers
avatar for Noah Willsea

Noah Willsea

Clemson University
Co-authors
IM

Inma Martos-Garcia

University of Cordoba
NA
JC

Juan Carlos Melgar

Clemson University
NA
MB

Maria Benlloch-Gonzales

University of Cordoba
NA
RF

Ricardo Fernandez-Escobar

University of Cordoba
NA
Wednesday September 25, 2024 1:30pm - 1:40pm HST
Coral 2

1:40pm HST

POM 2 - Mechanization Reduces Pruning and Harvest Labor Time in the Cider Apple Orchard
Wednesday September 25, 2024 1:40pm - 1:50pm HST
While fresh-eating, dessert apples dominate the apple market of Washington State, the over 30-fold national increase in volumetric cider production over the past 15 years indicates there is growing demand for specialty cider apples, or apple cultivars with positive cider-making attributes such as high polyphenol content. In a commercial cider orchard, the labor costs associated with thinning, pruning, and harvest comprise a majority of the annual variable production costs once the orchard is in full production; thus, reducing the labor time to perform these tasks has the potential to increase the appeal and profitability of growing cider apples. Further, when cider apples are pressed into juice soon after harvest, cosmetic damage and bruising of the fruit during harvest has minimal impact on juice quality, indicating a strong potential for harvest mechanization. This study separately examines mechanical hedging and mechanized over-the-row harvest (using a modified Oxbo-Korvan 930 harvester) in a multi-cultivar cider apple orchard. Mechanical hedging both sides of the orchard row occurred at a rate of 2.1-3.5 seconds per meter across 5 years. Across 16 cultivars and 3 years, mechanical harvest occurred at a rate of 2.7-3.1 seconds per meter, and the average capture efficiency was 82% with no significant differences between cultivars. Based on these results, a combination of mechanical pruning and harvest could significantly lower labor time, and thus the total production costs, associated with growing cider apples.
Speakers
CM

Carol Miles

Washington State University
Co-authors
AK

Aidan Kendall

Washington State University
NA
ES

Ed Scheenstra

Washington State University
NA
SB

Seth Brawner

Washington State University
Wednesday September 25, 2024 1:40pm - 1:50pm HST
Coral 2

2:00pm HST

Workshop: Evaluation Methods to Assess the Drought Tolerance of Landscape Plants in the Western United States
Wednesday September 25, 2024 2:00pm - 4:00pm HST
This workshop is to introduce the coordinated network of non-biased plant trials that has been successfully established to assess plant growth and aesthetic quality under deficit irrigation in six locations with different climate and soil types. The standard evaluation method will be highlighted to allow the audience to gain a behind-the-scenes look at the success and challenges of managing a multi-year and multi-state field project titled ‘Climate Ready Landscape Plants’. The evaluation methods employed in this project could potentially be utilized for selecting climate-resilient plants in other regions of the United States and beyond.

During their presentations, participants will be invited to: 1) Learn about the process of building cooperator and stakeholder engagement for a regional multistate project. 2) Practice using an Excel-based Irrigation Log to apply deficit irrigation using reference evapotranspiration published by local weather stations. 3) Practice evaluating selected landscape plants (pictures and/or live plants purchased from Home Depot in Honolulu) using the Rubric for Plant Aesthetic Ratings developed by the UC Landscape Plant Irrigation Trials™ team. 4) Learn the standard methods for collecting plant physiology data of selected landscape plants across multiple locations and understand the project results regarding stomatal conductance, which was collected using LI-600 Porometer/Fluorometer, LI-6800 Photosynthesis System, and/or CIRAS-3/4 Portable Photosynthesis System, METER Groups, etc. Ventors such as LI-COR Biosciences, PP Systems and/or METER Group will be invited to demonstrate their equipment for plant physiological measurements (e.g. stomatal conductance) during the session. 5) Learn the standard methods for collecting plant growth and visual quality data across six locations and understand the challenges and results of common taxa tested in six diverse geographic locations. 6) Learn step-by-step how to conduct open houses and invite professionals to help evaluate plants in the field trials, as well as how to collect and use the data.

Following their presentations, the six speakers along with other team members including Dr. Alessandro Ossola, Dr. Lloyd Nackley, Dr. Ryan Contreras, Dr. Shital Poudyal, and Dr. Youping Sun, will be invited to join a 30-min panel discussion session to further share the success and challenges of managing a multi-year and multi-state field project. They will delve into the opportunities and challenges currently facing the Green Industry. This discussion aims to foster future collaboration for expanding current research and Extension efforts. The goal is to promote the production and utilization of low-water-use plants within the green industry and among the gardening public, especially in the context of a changing climate.

Western U.S. nursery stock, bedding, annual, and perennial plant sales exceeded $2.9 billion in 2017, with nursery stock sales from this region alone accounting for 37.6% of total U.S. sales (Agricultural Statistics, 2017). However, climate change and increased urban water demand threaten the future of the Green Industry. The Western U.S. is expected to endure extreme droughts escalating in severity due to climate change, less predictable precipitation patterns, and decreased soil moisture (Cayan et al., 2010). Urban water supplies will be further stressed by population growth. The populations of Arizona, Idaho, Nevada, and Utah increased by 1.7% or more from 2017 to 2018 (United States Census Bureau, 2018). To address these challenges, growers must supply low-water-use plants and the landscape industry must utilize them to facilitate water conservation by reducing landscape irrigation requirements. In response to this need, the USDA Agricultural Marketing Service Specialty Crop Multi-State Program funded a project titled ‘Climate Ready Landscape Plants’ in 2020 to the University of California, Davis. With the funding, trial methods developed in California have been expanded to four additional western states: Arizona, Oregon, Utah, and Washington. A coordinated network of non-biased plant trials has been established to assess plant growth and aesthetic quality under three irrigation frequencies. Low-water-use plants were identified in 2022 and 2023 and will be recommended for production and utilization. The information developed will be provided to the green industry to aid in sustainable decision-making, marketing, and business support. The evaluation methods employed in this project could potentially be utilized for selecting climate-resilient plants in other regions of the United States and beyond. Agricultural Statistics 2017. 2017. United States Department of Agriculture National Agricultural Statistics Service. https://www.nass.usda.gov/Publications/Ag_Statistics/2017/Complete%20Ag%20Stats%202017.pdf Cayan, D.R., Das, T., Pierce, D.W., Barnett, T.P., Tyree, M., and Gershunov, A. 2010. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proceedings of the Natl. Acad. of Sci. 107 (50), 21271-21276. https://doi.org/10.1073/pnas.0912391107 United States Census Bureau. 2018. Nevada and Idaho are the nation’s fastest growing states. United States Department of Commerce. https://www.census.gov/newsroom/press-releases/2018/estimates-national-state.html

Coordinator(s)
  • Youping Sun, Utah State University, Department of Plants, Soils & Climate, Logan, Utah, United States
Moderator(s)
  • Lloyd Nackley, Oregon State University, Horticulture, Aurora, OR, United States
Speaker/Participant(s)
  • Lorence Oki, Building Cooperator and Stakeholder Engagement for a Regional Multistate Project 
  • Jared Sisneroz, Coordinating a Standard Irrigation Protocol across Six Diverse Plant Trial Locations 
  • Karrie Reid, Introducing the Criteria for Plant Aesthetic Ratings
  • Natalie Levy, A Step-by-Step Guide for Organizing a Successful Open House Event
  • Soo-Hyung Kim, Coordinated Assessment of Physiological and Morphological Traits of Landscape Plants across Multiple Locations in the Western United States
  • Ursula Schuch, Performance of Landscape Shrubs under Three Irrigation Regimes in Arizona
Moderator
avatar for Lloyd Nackley

Lloyd Nackley

oregon state university
Lloyd Nackley is a plant ecologist who applies a systems approach to improve nursery and greenhouse management. Nackley's research program at Oregon State University focuses on addressing four challenges facing nursery and greenhouse production in Oregon: irrigation application, pest... Read More →
Speakers
KR

Karrie Reid

Env. Hort Advisor, ret'd., University of California
SK

Soo-Hyung Kim

Dr. Kim is a Professor and Plant Ecophysiologist whose research focuses on how plants interact with their environment at the whole-plant scale. He is the principal investigator for the ‘Climate Ready Landscape Plants’ project at the University of Washington.
NL

Natalie Levy

Dr. Levy is an Associate Specialist for Water Resources at the South Coast Research and Extension Center. She specializes in landscape plant water-use efficiency research, water resource management, and water pollution prevention/mitigation.
US

Ursula Schuch

University of Arizona
Dr. Schuch is a Professor and Extension Specialist in Environmental Horticulture in the School of Plant Sciences. Dr. Schuch’s research focuses on plant selection and management strategies to conserve water, maintain plant health, and aesthetic function. She is the principal investigator... Read More →
LO

Lorence Oki

University Of California, Davis
JS

Jared Sisneroz

UC Davis
Mr. Sisneroz is the project manager of the UC Landscape Plant Irrigation Trials (UCLPIT) and the ‘Climate Ready Landscape Plants’ programs. He specializes in landscape plant water-use efficiency research and water resource management.
Wednesday September 25, 2024 2:00pm - 4:00pm HST
Coral 2

4:14pm HST

Growth Chambers and Controlled Environments 2 (CE 2)
Wednesday September 25, 2024 4:14pm - 5:45pm HST
Carbohydrate Synthesis and Freeze Tolerance of Clonal-type Bermudagrasses as Affected by Mowing Heights During Cold Acclimation and Deacclimation Process - Mingying Xiang
Understanding Photoperiod Effects on Seek and Seedling Quality in Soybean Speed Breeding- Christiane da Silva
Identifying the Optimal Range of pH Management for Hydroponic Leafy Vegetables - Yujin Park
Enhancing Iron Bioavailability in Hydroponic Leafy Greens by Iron Chelators - Asmita Nagila
Effects of Mycorrhiza and Ciochar Interactions on Geraniums - Teal Hendrickson
Exploring Different Nutrient Solution Quantities to Optimize Quantity and Quality in Hydroponic Production - Puja Subedi
The Effect of Climate Change on Plants: A Case Study with Wheat - Kira Webster
How Does Supplementing Dissolved Oxygen Impact Hydroponic Strawberry Production? - Jonathan Ries
Exploring Different EC Levels to Optimize Quantity and Quality in Hydroponic Production - Puja Subedi

Wednesday September 25, 2024 4:14pm - 5:45pm HST
Coral 2

4:15pm HST

CE 2 -Carbohydrate Synthesis and Freeze Tolerance of Clonal-type Bermudagrasses as Affected by Mowing Heights During Cold Acclimation and Deacclimation Process
Wednesday September 25, 2024 4:15pm - 4:25pm HST
Bermudagrass (Cynodon spp.) is a prominent warm-season turfgrass extensively utilized across golf courses, athletic fields, home lawns, and recreational areas due to its excellent heat tolerance, good traffic tolerance, and strong recuperative potential. Despite its strengths, winter survivability in colder climates remains a concern. Research has revealed variations in freeze tolerance across bermudagrass cultivars, yet there's a gap in understanding the underlying physiological mechanisms and the impact of cold acclimation and deacclimation processes. Additionally, the influence of mowing height on carbohydrate synthesis and freeze tolerance has been reported. To address these gaps, a study utilizing turfgrass plugs from different acclimation stages was conducted in a freeze chamber. The objective of this study was to examine freeze tolerance and carbohydrate synthesis in four clonal-type bermudagrass varieties ('Tifway’, ‘Tahoma 31’, ‘Astro’, and ‘TifTuf’) under mowing heights of 0.5” and 1.5” across various cold acclimation and deacclimation stages. The plugs were subjected to soil temperatures ranging from -5°C to -12°C, with survival assessed after three weeks to determine the lethal temperature (LT50) for each condition. Rhizome carbohydrate levels at each stage were determined. The correlation between rhizome carbohydrate level and freeze tolerance was determined. The data from this study is currently being analyzed.
Speakers
MX

Mingying Xiang

Oklahoma State University
Co-authors
DM

Dennis Martin

Oklahoma State University
NA
LZ

Lu Zhang

Oklahoma State University
SY

Shuhao Yu

Oklahoma State University
YS

Yanwei Sun

Oklahoma State University
NA
Wednesday September 25, 2024 4:15pm - 4:25pm HST
Coral 2

4:25pm HST

CE 2 - Understanding Photoperiod Effects on Seed and Seedling Quality in Soybean Speed Breeding
Wednesday September 25, 2024 4:25pm - 4:35pm HST
Soybean is a short-day plant, which means that days must be shorter than a critical value to induce flowering. Manipulating the photoperiod regime is a well-known way to shorten plant cycles in speeding breeding programs. However, the impact of the photoperiod on the quality of the produced seeds is not well understood. Here, we investigate how photoperiod affected the seed and seedling quality in soybean plants, grown in a controlled environment. Soybean (Glycine max) plants (var. S16-14801C and CZ7570LL) were grown in growth chambers with controlled temperature (27 ± 0.5˚C), CO2 (475 ± 15 µmol mol-1), humidity (70 ± 5.0%), and light (300 ± 5 µmol m-2 s-1 at table; 20% blue,10% green, 70% red). One week after germination, seedlings were exposed to different photoperiod regimes: i) 10 h (0 w at 18 h), ii) two weeks at 18 h and then 10 h (2 w at 18 h), iii) four weeks at 18 h and then 10 h (4 w at 18 h); iv) six weeks at 18 h and then 10 h (6 w at 18 h). The plants were grown in the described treatments until the R8 stage (95% brown pods), without changing the light fixture height (industry standard practice). A sample of seeds was harvested and analyzed regarding quality while other samples were placed to germinate in seed germination paper to evaluate germination rate and seedling growth for 10 days. Similar results were found for both varieties; plants of all treatments presented different heights, in which plants at 0 w at 18 h were shorter (50 cm) and 6 w at 18 h taller (180 cm). Treatments did not affect the moisture or weight of 100 seeds. Conversely, germination and seedling survival were 30% lower in seeds from plants 0 w at 18 h than in other treatments. Similar results were found for the root (13% lower in 0 w at 18 h) and shoot length (19% lower in 0 w at 18 h) of seedlings. However, the dry weight of seedlings was similar among treatments. Manipulating the photoperiod can speed up the plant cycle and is a good alternative for speed-breading programs. However, extreme photoperiods and low daily light integral can produce seeds and seedlings with lower quality that can influence the production of plants of the next generation.
Speakers
avatar for Cristiane da Silva

Cristiane da Silva

Postdoctoral Research Scholar, North Carolina State University
I'm Cristiane, a plant physiologist with experience in plant biochemistry and plant responses to abiotic stress. Currently, I'm a post-doc at NCSU studying the effects of light on plant life cycles to expedite breeding purposes in crop and tree species. When I'm not working, I enjoy... Read More →
Co-authors
CC

Cristian Collado

North Carolina State University
NA
RH

Ricardo Hernandez

North Carolina State University
NA
Wednesday September 25, 2024 4:25pm - 4:35pm HST
Coral 2

4:35pm HST

CE 2 - Identifying the Optimal Range of pH Management for Hydroponic Leafy Vegetables
Wednesday September 25, 2024 4:35pm - 4:45pm HST
In hydroponics, the pH of the nutrient solution influences the solubility and availability of essential nutrients. The optimal pH for plant nutrient uptake in many crop species is around 6.0. However, the impacts of precise pH management on plant nutrient uptake, crop yield, and the optimal pH range remain less clear. In this study, we investigated the effects of pH management range on plant nutrient uptake and the growth of hydroponic leafy vegetables. Within an indoor vertical farm, we grew lettuce (Lactuca sativa) 'Rex,' kale (Brassica oleracea var. sabellica) 'Red Russian,' and arugula (Eruca sativa) 'Astro' using deep water culture hydroponics at the air temperature of 22 °C under a photosynthetic photon flux density of 200 μmol∙m−2∙s−1 with a 24-h photoperiod. The experiment included six pH treatments: pH 6, 6±0.5, 6±1.0, 6±1.5, 6±2.0, and without pH control. Compared to managing pH at 6, maintaining pH within 6±1.0 had generally similar impacts on leaf number, leaf area, SPAD index, shoot and root fresh mass, and shoot and root dry mass in all three crops. However, when compared to managing pH at 6, maintaining pH at 6±1.5 or greater reduced leaf area (by 32-47% in lettuce, by 30-41% in kale, or by 56-65% in arugula) and shoot fresh mass (by 33-54% in lettuce, by 37-45% in kale, or by 48-64% in arugula). Furthermore, in comparison to managing pH at 6, maintaining pH at 6±1.5 or greater also decreased leaf number in lettuce by 3-5 leaves and in arugula by 13-15 leaves but increased the root fresh mass of lettuce by 26-43%. Our results suggest that maintaining pH within 6±1.0 can be effective in promoting optimal nutrient uptake and overall plant development in the context of hydroponic cultivation.
Speakers
YP

Yujin Park

Arizona State University
Co-authors
ME

Matthew Easter

Arizona State University
NA
ZC

Zhihao Chen

Arizona State University
NA
Wednesday September 25, 2024 4:35pm - 4:45pm HST
Coral 2

4:45pm HST

CE 2 - Enhancing Iron Bioavailability in Hydroponic Leafy Greens by Iron Chelators
Wednesday September 25, 2024 4:45pm - 4:55pm HST
Iron is an essential micronutrient for the growth and development of both plants and humans, as it plays vital roles in processes such as protein synthesis, respiration and DNA replication. Leafy greens, vital dietary sources of iron, can be cultivated with increased bioavailable iron through hydroponics by customizing nutrient solutions. Conventionally, iron chelates like EDTA and DTPA, are used in hydroponics, but challenges persist in iron acquisition due to their pH dependency as well as quick oxidation to ferric ion which is harder to uptake by plants. Good sources of chelates that respond well to high pH values, like EDDHA, are often more expensive. Studies suggest that iron complexed with humic substances exhibits higher efficiency, though confirmation in large-scale hydroponic systems is still needed. Fulvic acids are water-soluble humic substances with lower molecular weights that hold promise as alternatives or supplements to synthetic chelates, enhancing iron uptake and stress tolerance. Hydroponic systems, such as Deep-Water Culture (DWC) or Nutrient Film Technique (NFT), impact plant growth and nutrient uptake differently based on temperature, EC, and pH. This research compared the effects of various iron chelators on lettuce and kale cultivation in DWC and NFT systems. Results indicate significant yield loss in iron-deficient kale, while iron-chelated solutions enhanced yields. The addition of fulvic acid to EDTA-chelated solutions notably improved kale yield in DWC compared to no iron and EDTA-only solutions. Leafy greens showed higher chlorophyll fluorescence (Fv/Fm ratio) and chlorophyll content in DWC compared to NFT. The results showed species-specific and system-specific responses. Notably, iron-chelated plants exhibit higher iron content correlating with increased shoot weight and chlorophyll content. The effect of fulvic acids and synthetic chelates might be synergistic, with both providing different advantages that can be complementary in hydroponic solutions. This study highlights the importance of iron management in hydroponics and the way forward for iron fortification techniques.
Speakers
AN

ASMITA NAGILA

Graduate Research Assistant, Texas A&M university
Co-authors
Wednesday September 25, 2024 4:45pm - 4:55pm HST
Coral 2

4:55pm HST

CE 2 - Effects of Mycorrhiza and Biochar Interactions on Geraniums
Wednesday September 25, 2024 4:55pm - 5:05pm HST
Biochar has long been proposed to be a substitute for peat in soilless mixes for greenhouse growing. Low levels of biochar have been shown to increase disease resistance, increase nutrient supply and uptake, and immobilize phytotoxic substances. Due to its high porosity and pH, biochar has the potential to provide an ideal habitat for mycorrhizal fungi to partner with plant roots. This study examined how various mycorrhiza sources interacted with different biochar rates to effect geraniums (Pelargonium x hortorum L. ‘Maverick Red’). Four different mycorrhizal sources were used in addition to a control containing no mycorrhiza: two commercial sources, MycoBloom and BioAg Vam-Endo, spores extracted from agricultural soils, and spores extracted from prairie soil, with four biochar rates implemented: 0, 15, 30, and 45%. Media with biochar incorporated remained saturated for longer periods after irrigation than pots filled with straight BM-7 peat-media. Prairie soil combined with 15% biochar-BM7 media formed buds and began to flower before all other treatments. Results suggest that biochar and mycorrhiza may pair well to improve potted plant growing.
Speakers
TH

Teal Hendrickson

Oklahoma State University
Co-authors
BD

Bruce Dunn

Oklahoma State University
GW

Gail Wilson

Oklahoma State University
NA
Wednesday September 25, 2024 4:55pm - 5:05pm HST
Coral 2

5:05pm HST

CE 2 - Exploring Different Nutrient Solution Quantities to Optimize Quantity and Quality in Hydroponic Production
Wednesday September 25, 2024 5:05pm - 5:15pm HST
Nutrient solutions play a crucial role in determining crop yield and quality, with optimized quantities offering sustainability benefits. However, there is a lack of comprehensive research regarding the optimal nutrient application quantity for various leafy green vegetables in recirculating hydroponic cultivation. To address this research gap, we proposed a project on different nutrient application quantities using the nutrient film technique (NFT) hydroponic system in a greenhouse with three replications during the fall (air temp: 24.22°C, RH: 31.2%), winter (air temp: 15.5 °C, RH: 73.3%) and early spring (air temp: 13.7 °C, RH: 72.4% ). The project focused on exploring different nutrient solution quantities of Low (76 liters), Medium (114 liters), and High (151 liters) nutrient regimens for six different leafy green vegetable species and cultivars common in Kansas including red butter lettuce (Lectuca sativa), green butter lettuce (Lectuca sativa), arugula (Eruca sativa), kale (Brassica oleracea), red malabar spinach (Basella alba), and basil (Ocimum basilicum). Our results showed that green butter lettuce and basil remained unaffected by the treatments throughout the study. Additionally, plant height, leaf count, and SPAD value for all species remained consistent across treatments and seasons. However, during the fall, the shoot fresh weight of red butter lettuce and kale increased by 7.11% and 21.1%, respectively, in the high-nutrient regimen. Moreover, the dry shoot weight of kale increased by 18.7% in the high-nutrient regimen, while the dry shoot weight of the red malabar spinach increased by 10.3% in the low-nutrient regimen. In contrast, during winter, the shoot fresh weight of red butter lettuce increased by 18.9% and 25.0%, respectively, in medium nutrient regimens compared to low and high nutrient regimens. Similarly, the shoot fresh weight of red malabar spinach increased by 15.3% and 25.0%, respectively, in low-nutrient regimens compared to medium and high-nutrient regimens. During early spring, the shoot fresh weight of red butter lettuce increased by 17.9-18.0% and that of arugula increased by 17.8% in the high-nutrient regimen, compared to low and medium nutrient regimens. In summary, the high-nutrient regimen benefited red butter lettuce and kale in fall and arugula in early spring. Conversely, during winter, the medium nutrient regimen benefited red butter lettuce, while the low nutrient regimen benefited red malabar spinach. The results from this experiment identified the optimal nutrient application quantity which helps to reduce nutrient waste for vital leafy vegetables in Kansas for different seasons and offers valuable production guidelines for local growers.
Speakers
PS

Puja Subedi

Kansas State University
I am a graduate research assistant working at the Kansas University Olathe, 22201 W Innovation Dr, Olathe, KS 66061. My major is urban food system under the department of horticulture and natural resources. Currently, I am working in the hydroponics research project.
Co-authors
TY

Teng Yang

Kansas State University
Wednesday September 25, 2024 5:05pm - 5:15pm HST
Coral 2

5:15pm HST

CE 2 - The Effect of Climate Change on Plants: A Case Study with Wheat
Wednesday September 25, 2024 5:15pm - 5:25pm HST
Anthropogenic climate change (ACC) will have considerable effects on plants, though the extent to which these effects are positive or negative has been controversial. For this poster, a fully factorial experiment combining water and temperature over broad ranges (10-90% soil water content under 16°C-40°C) was carried out to address three shortcomings that might help explain the contrasting effects of climate change on plants: testing only one climate variable (e.g., only water or only temperature), failure to account for nonlinear responses to climatic variables, and studying a limited number of response variables. The experiment utilized wheat as the model species and found that most dependent variables related to grain production showed the highest performance under 23-33°C and low water (
Speakers
KW

Kira Webster

University of Hawaii at Manoa
Wednesday September 25, 2024 5:15pm - 5:25pm HST
Coral 2

5:25pm HST

CE 2 - How Does Supplementing Dissolved Oxygen Impact Hydroponic Strawberry Production?
Wednesday September 25, 2024 5:25pm - 5:35pm HST
Oxygen is crucial for the growth and nutrient uptake of plant roots, especially in crops like strawberries that demand high levels of oxygen in their root zones. However, in hydroponic systems, the nutrient solution is often inadequately oxygenated. In this study, we examined the effects of supplementing dissolved oxygen (DO) into the nutrient solution on the growth of strawberry plants. Inside an indoor vertical farm, bare-root plants of strawberry ‘Albion’ and ‘Eversweet’ were grown using deep water culture hydroponics under a controlled environment of 23 °C air temperature and an 18-h photoperiod, with an extended photosynthetic photon flux density of 350 µmol∙m –2 ∙s –1 . The DO concentration of the nutrient solution was maintained at control levels (no adjustment) or supplemented using an air pump or an oxygen concentrator. The average DO concentrations in the control condition was 70%, while supplementing the nutrient solution with an air pump or an oxygen concentrator increased the average DO concentration to 85% and 100%, respectively. Supplementing with DO had minimal to no effect on the days to root of strawberry bare root plants in both cultivars. Four weeks after the DO treatments, root length, crown diameter, leaf area, and fresh mass of shoot and root were also similar in both cultivars regardless of DO concentration. The effects of supplementing DO on flowering and fruit production will also be presented.
Speakers
JR

Jonathan Ries

Arizona State University
Co-authors
YP

Yujin Park

Arizona State University
Wednesday September 25, 2024 5:25pm - 5:35pm HST
Coral 2

5:35pm HST

CE 2 - Exploring Different EC Levels to Optimize Quantity and Quality in Hydroponic Production
Wednesday September 25, 2024 5:35pm - 5:45pm HST
Efficient nutrient management is the key to successful hydroponic production. However, there is a lack of comprehensive research regarding the optimal electrical conductivity (EC) levels for various leafy green vegetables in recirculating hydroponic cultivation. To address this research gap, we experimented with different EC levels using the nutrient film technique (NFT) hydroponic system in a greenhouse with three replications during the fall (air temp: 24.22°C, RH: 31.2%) winter (air temp: 15.5 °C, RH: 73.3%) and early spring (air temp: 13.7 °C, RH: 72.4%). The experiment was conducted using three different EC levels (1.2, 1.8, and 2.4 mS/cm) for six different leafy green vegetables kale (Brassica oleracea) ‘Winter bor F1’ and ‘Toscano’, swiss chard (Beta vulgaris), basil (Ocimum basilicum) ‘Prospera® Compact DMR (PL4)’ and ‘large leaf’ and red malabar spinach (Basella alba). Our results showed that, during the fall, the shoot fresh weight of the ‘Winter bor F1’ increased by 13.1 % in EC 2.4 compared to EC 1.2 and that of Swiss chard increased by 8.3-20.6% in EC 2.4 compared to EC 1.2 and 1.8 while that of ‘Prospera® Compact DMR (PL4)’ basil increased by 13.1-13.9 % in EC 1.8 compared to EC 1.2 and 2.4. In contrast during the winter, the shoot fresh weight of ‘Toscano’ kale, ‘Winter bor F1’ kale, and ‘large leaf’ basil increased by 11.2-17.8%, 18.9-20.8%, and 13.2-14.7%, respectively in EC 2.4 compared to EC 1.2 and 1.8, while that of ‘Prospera® Compact DMR (PL4)’ basil increased by 19.2 % in EC 1.2 compared to the EC 2.4. However, during the early spring, only the shoot fresh weight of ‘Winter bor F1’ kale in EC 1.8 was increased by 10.0 % compared to EC 1.2, while the plant height and fresh shoot weight of large leaf basil was increased slightly by 3.1-5.6% in EC 2.4 compared to EC 1.2. In summary, this experience suggested that ’Winter bor F1’ kale performed best in EC 2.4 during the fall and winter seasons but grew best in EC 1.8 during the early spring. In addition, the 2.4 mS/cm proved the optimal EC level for Swiss chard during the fall, ‘Toscano’ kale during the winter, and ‘large leaf’ basil during the spring. The results from this experiment identify optimal EC levels of vital leafy vegetables in Kansas for different seasons, aiding Kansas growers in reducing nutrient waste and enhancing leafy vegetable production.
Speakers
PS

Puja Subedi

Kansas State University
I am a graduate research assistant working at the Kansas University Olathe, 22201 W Innovation Dr, Olathe, KS 66061. My major is urban food system under the department of horticulture and natural resources. Currently, I am working in the hydroponics research project.
Co-authors
TY

Teng Yang

Kansas State University
Wednesday September 25, 2024 5:35pm - 5:45pm HST
Coral 2

6:00pm HST

Graduate Student Poster Competition
Wednesday September 25, 2024 6:00pm - 7:00pm HST
This competition is open to graduate students that have a poster presentation scheduled during the ASHS conference AND have also signed up to participate in this competition (Note: This is separate of the assigned time to present your abstract during the conference program).

Please note that if you do not also present your poster during the regularly scheduled Poster session, you will be disqualified from the Poster Competition.

Competition participants will be assigned to a room to present for the competition (this information will be emailed to you the week prior to the conference). You will be responsible for bringing your poster on a thumb drive to your assigned room in order to participate.


Wednesday September 25, 2024 6:00pm - 7:00pm HST
Coral 2
 
Thursday, September 26
 

7:59am HST

Vegetable Crops Management 4 (VCM 4)
Thursday September 26, 2024 7:59am - 9:45am HST
Watermelon Rootstock Variety Trial to Understand the Impacts of Grafting on Watermelon Yield and Fruit Quality - Fayrouz Buojaylah
Effect of Biofungicides Containing Trichoderma and Grafting on Watermelon Productivity and Plant Health - Fayrouz Buojaylah
Canary Melons Cultigen Yield and Quality Evaluations in North Carolina, 2023 - Jonathan Schultheis
Watermelon Cultigen Yield Response to Fusarium oxysporum f. sp. niveum Incidence in North and South Carolina, USA - Stuart Michel
Effect of Biostimulants on Field Grown Watermelon (Citrullus lanatus) under Deficit Irrigation and Fertility. - Evan Christensen
Development of the winter artichoke production system in a subtropical climate - Shinsuke Agehara
Globe Artichokes - Variety Trials for Florida Production and Marketing Evaluations - Evelyn Fletcher

Moderator
FB

Fayrouz Buojaylah

University ofr California, Cooperative Extension Stanislaus County
Thursday September 26, 2024 7:59am - 9:45am HST
Coral 2

8:00am HST

VCM 4 - Watermelon Rootstock Variety Trial to Understand the Impacts of Grafting on Watermelon Yield and Fruit Quality
Thursday September 26, 2024 8:00am - 8:15am HST
In California, watermelon grafting has been gaining tremendous popularity over other graft-eligible vegetable commodities especially among large-acreage growers. To maintain viability and continued popularity of grafted watermelons in California, we conducted a watermelon rootstock variety trial in 2023 to evaluate the impact of different types of locally popular rootstocks on watermelon yield and quality. Seven watermelon rootstocks, grouped into three distinct types: Interspecific hybrid squash (Cucurbita maxima x Cucurbita moschata), Citron (Citrullus amarus), and Bottled gourd (Lagenaria siceraria), were grafted with a 45-ct field scion, ‘Warrior’ by a commercial greenhouse located in Mills River, NC. All grafted and non-grafted seedlings were then mechanically transplanted into a commercial field near Modesto, CA on 19 April 2023. The trial was arranged as a randomized complete block design with four replications for each treatment. Each plot was 24 m long and contained 13 triploid plants, either grafted or not, alongside four grafted or non-grafted pollenizers. Four harvests were conducted from 25 July to 17 Oct with the help of farm crew. Total yields at each harvest and fruit quality from the first harvest were recorded and compared among rootstock-scion combinations. For quality assessment, fruit length and width were measured with a yardstick. Sugar content (ºBrix) was measured by scooping the central flesh of each halved fruit using a portable reflectometer. Flesh firmness was evaluated using a fruit penetrometer, with measurements taken at spots located one-third and two-thirds of the distance from the blossom end after halving the melon. Rind thickness at the blossom and stem ends were measured using a digital caliper. The overall impact of grafting resulted in an average increase of total yield by 51.5% compared to the non-grafted control (54.7 vs. 36.1 tons per acre) with the most significant difference occurred at the second harvest (27.0 vs. 14.8 tons per acre). Differences of fruit quality between grafted and non-grafted watermelons were primarily observed for fruit firmness. The significant increase of firmness (4.9 vs. 3.4 kg.cm-2) for grafted fruit was also confirmed based on the results of taste sensory evaluation. Slight increases of fruit width and stem end rind thickness after grafting were also found. No changes of ºBrix after grafting were detected. Overall, grafting has proven to be a reliable method for enhancing watermelon yield and maintaining fruit quality in California. Continuous needs assessment will be performed to monitor any pressing issues of watermelon grafting in California.
Speakers
FB

Fayrouz Buojaylah

University ofr California, Cooperative Extension Stanislaus County
Co-authors
ZW

Zheng Wang

Univ. of California Cooperative Extension
Thursday September 26, 2024 8:00am - 8:15am HST
Coral 2

8:15am HST

VCM 4 - Effect of Biofungicides Containing Trichoderma and Grafting on Watermelon Productivity and Plant Health
Thursday September 26, 2024 8:15am - 8:30am HST
The goal of the project is to evaluate the potential of reducing chemical fumigation in California's watermelon production using grafting and Trichoderma-based biofungicide. Two field experiments in 2022 and 2023 were implemented within commercial watermelon fields in Stockton and Modesto, CA. Each trial included three rootstocks (Cobalt, Flexifort, and RS841) grafted onto a 45-ct scion (Summer Breeze). Two Trichoderma-containing products were applied to the grafted and nongrafted seedlings through tray soaking at one day before transplanting or field chemigation at 30 and 62 days after transplanting (DAT). The application rates for soaking and chemigation were 45 g.75 L-1 of water and 2.2 kg.ha-1, respectively. All seedlings were mechanically transplanted during mid-May of both years into a split-split plot design with the Trichoderma product as the main factor and application method as the sub-plot. All treatments were replicated four times. Each treatment row was 18.6 m long and contained ten grafted or nongrafted triploids and three grafted or nongrafted pollenizers. Vine health was visually assessed three times for symptoms associated with soil-borne fungal pathogens. Canopy coverage was measured starting at 22 DAT in 2022 and 40 DAT in 2023 and thereafter at an approximate interval of two weeks for a total of six measurements. Harvest was conducted three times in 2022 and twice in 2023 to analyze yield and quality differences among treatments. Runner and root samples were taken amid the harvest and shipped to the UC Davis Fungal Pathology Lab for further identification. Results indicated that the Trichoderma-containing bio-fungicides were not as effective as grafting on preventing vine decline and maintaining canopy coverage in both trials. The synergistic effects of grafting and Trichoderma inoculation provided some but limited benefits to plant health compared to the single factor of grafting. The overall influence of biofungicides on yield was also less notable than that of grafting regardless of application method. For fruit quality, grafting dominated the impacts over biofungicides on fruit firmness and rind thickness in both trials. Charcoal rot (Macrophomina phaseolina) with other putative co-infestations of Fusarium pathogens were diagnosed from nongrafted inoculation-free plots in 2022 while no significant soil-borne diseases were identified from 2023. Overall, grafting with multi-pathogen resistant rootstocks prove to be a reliable method for enhancing watermelon yield while maintaining crop health. More work is still needed to further explore the optimal application protocols tailored to grower’s farming system to maximize the effects of biofungicide.
Speakers
FB

Fayrouz Buojaylah

University ofr California, Cooperative Extension Stanislaus County
Co-authors
ZW

Zheng Wang

Univ. of California Cooperative Extension
Thursday September 26, 2024 8:15am - 8:30am HST
Coral 2

8:30am HST

VCM 4 - Canary Melons Cultigen Yield and Quality Evaluations in North Carolina, 2023
Thursday September 26, 2024 8:30am - 8:45am HST
Canary melons, Cucumis melo var. inodorus, are grown in the United States, with most acreage produced in California and Arizona. There is very limited production acreage in the southeastern United States, including North Carolina. No statistics are gathered by USDA on canary melons as this type of melon is truly a specialty melon. The goal of this study was to determine how well adapted canary melon cultigens are with respect to yields and quality when grown in North Carolina and to gauge the possibilities of producing this crop as a commercial option in the state. Fourteen cultigens were evaluated from eight different seed companies for yield and size over 16 harvests, flesh firmness and sweetness, and shape and rind characteristics. Statistical design was a randomized complete block with four replications and mean separation across measures was conducted using a LSD test at the P
Speakers
JS

Jonathan Schultheis

North Carolina State University
Jonathan Schultheis is a Professor in the Department of Horticultural Science at North Carolina State University. He has worked exclusively with North Carolina State University for over 35 years. He research and extension work primarily involves cucurbit crops and sweetpotatoes. Key... Read More →
Co-authors
AP

Andrew Pfefferkorn

North Carolina State University
NA
BS

Baker Stickley

North Carolina State University
BP

Brandon Parker

North Carolina State University
NA
SM

Stuart Michel

NC State University
Thursday September 26, 2024 8:30am - 8:45am HST
Coral 2

8:45am HST

VCM 4 - Watermelon Cultigen Yield Response to Fusarium oxysporum f. sp. niveum Incidence in North and South Carolina, USA
Thursday September 26, 2024 8:45am - 9:00am HST
Fusarium wilt of watermelon, caused by the soilborne pathogen Fusarium oxysporum f. sp. niveum (FON), is a major disease impacting the watermelon industry. FON can severely reduce yields and is easily dispersed. Cultivar resistance is a desired control strategy due to high fungicide and grafting costs. In 2021 and 2022, triploid watermelon cultivars were evaluated at two locations (Clayton, NC and Charleston, SC) for their tolerance to FON. Eight common cultivars were evaluated for disease incidence and yield at both locations in both years. In 2022, two unreleased cultigens were also evaluated at both locations. All studies used a randomized complete block design with four replications. ‘Fascination’ grafted to ‘Carolina Strongback’ rootstock was included as a control each year. Disease incidence was measured every week starting three weeks after transplanting and until the first harvest at each location. Fruit weights and counts were taken to measure yield. In 2021, ‘Fascination’ had the lowest disease incidence at 75% in NC and ‘Embasy’ had the lowest incidence at 15% in SC. ‘Joy Ride’ had 100% incidence in NC and ‘Shoreline’ had the highest incidence in SC at 68%. Yields correlated with disease incidence with ‘Fascination’ having the highest yield of the ungrafted treatments in NC with 17,878 lb/ac (pounds per acre) and ‘Embasy’ with 22,687 lb/ac in SC. ‘Shoreline’ was the lowest yielding at both locations with 6,556 lb/ac in NC and 5,376 lb/ac in SC. The grafted ‘Fascination’ treatment had the lowest disease incidence and the highest yield at both locations in 2021. In 2022, the unreleased cultigen HMC633802 had the lowest disease incidence at both locations with 50% in NC and 51% in SC. Of the eight common cultivars, Fascination had the lowest incidence in NC at 83% and El Capitan had the lowest in SC at 52%. ‘Shoreline’ had the highest incidence at both locations with 100% in NC and 94% in SC. Yields correlated with disease incidence. Unreleased cultigen HMC633800 had the highest yield of the ungrafted treatments in NC with 15,575 lb/ac and Powerhouse had the highest yield in SC with 27,243 lb/ac. The grafted ‘Fascination’ treatment had the lowest incidence and highest yield at both locations in 2022. The cultigens we evaluated provided minimal tolerance to FON in both years.
Speakers
SM

Stuart Michel

NC State University
Co-authors
AK

Anthony Keinath

Clemson University
NA
JS

Jonathan Schultheis

North Carolina State University
Jonathan Schultheis is a Professor in the Department of Horticultural Science at North Carolina State University. He has worked exclusively with North Carolina State University for over 35 years. He research and extension work primarily involves cucurbit crops and sweetpotatoes. Key... Read More →
LQ

Lina Quesada

North Carolina State University
NA
Thursday September 26, 2024 8:45am - 9:00am HST
Coral 2

9:00am HST

VCM 4 - Effect of Biostimulants on Field Grown Watermelon (Citrullus lanatus) under Deficit Irrigation and Fertility.
Thursday September 26, 2024 9:00am - 9:15am HST
The impacts of climate change and drought threaten water supplies crucial for watermelon production. Rising fertilizer costs and off-site effects also pose problems for the sustainability of watermelon production. Biostimulants shown promise in helping plants maintain production under deficit irrigation conditions and may offset fertility addition through ecosystem services and stimulatory effects. In this study two watermelon cultivars (Crimson Sweet and Fascination) were treated with three biostimulant products (Mighty Mycorrhizae, Spectrum DS, and Continuum) and then subjected to reduced fertility (67% of recommended rate) and irrigation (75% evapotranspiration). Raised beds covered in plastic mulch were used with rows spaced 1.83 meters apart and plants 0.61 meters apart within rows. Growth metrics and stages were recorded and compared among treatments. Watermelon fruits were harvested at maturity over a one-week period and yield was compared. The final biomass was measured after harvest. Statistical analysis is ongoing, and a second year of this field trial will be completed in August 2024, allowing for final conclusions to be drawn.
Speakers
EC

Evan Christensen

Utah State University
Co-authors
DD

Dan Drost

Utah State University
NA
YS

Youping Sun

Utah State University
Thursday September 26, 2024 9:00am - 9:15am HST
Coral 2

9:15am HST

VCM 4 - Development of the winter artichoke production system in a subtropical climate
Thursday September 26, 2024 9:15am - 9:30am HST
Artichoke (Cynara cardunculus var. scolymus) belongs to the sunflower family and is cultivated for its flower buds. Being adapted to Mediterranean climates, artichoke plants require adequate winter chilling for flower bud induction and yet is susceptible to freeze damage. Because of these climatic requirements, nearly 100% of artichoke production in the United States currently comes from California. Insufficient winter chilling is among the major environmental constraints for artichoke production in subtropical and tropical climates. We started this study in 2015 with the goal of developing artichoke as a new winter crop in Florida. First, we developed a protocol for artificial flower bud induction using a plant hormone, gibberellic acid (GA3). With the optimum rate and timing, GA3 application is highly effective in inducing bud formation, irrespective of winter chilling. Second, we evaluated eight cultivars based on earliness of bud formation, yield, and bud quality. ‘Imperial Star’ and ‘Green Queen’ were selected as the most promising cultivars in Florida, with the maximum yields of 17.3 and 11.8 t ha–1, respectively. The current artichoke production guide provides recommendations on GA3 application, cultivars, planting configurations, plastic mulch, and basic pest management. In 2023, artichoke was grown on about 12 hectares in Florida using the production guide we developed. We are currently testing additional hybrid cultivars and assessing nutritional values and postharvest quality to enhance the viability of artichoke as Florida’s new winter crop.
Speakers
SA

Shinsuke Agehara

University of Florida
Co-authors
WW

Weining Wang

University of Florida
Thursday September 26, 2024 9:15am - 9:30am HST
Coral 2

9:30am HST

VCM 4 - Globe Artichokes - Variety Trials for Florida Production and Marketing Evaluations
Thursday September 26, 2024 9:30am - 9:45am HST
The globe artichoke (Cynara cardunculus) is a large thistle crop of the Asteraceae family, native to the Mediterranean. Globe artichokes are a large, leafy plant, with edible component as an immature flower bud. With production dominated by California, Florida can provide a new commodity for southeastern growers while reducing our carbon footprint. Globe artichokes have not been a traditional crop in the state of Florida, even as a garden variety. This study demonstrates the need to focus on varieties for the subtropics. We evaluated the best performing artichoke variety in addition to the retail favorite by curb appeal. Within a farmer's market survey, more than 80% of shoppers voted for 'Green Queen' amongst five other varieties (Imperial Star, Green Globe Improved, etc.). It also represented the highest yielding, at 12,707 lbs/acre, followed by 'Imperial Star' at 11,484 lbs/acre. An artichoke was valued at $4 each globe, while the flower was $5 per stem during the Mother's Day market. The demand continues from chefs and newly transplanted retail shoppers.
Speakers
avatar for Evelyn Fletcher

Evelyn Fletcher

University of Florida
I am the commercial row-crop Extension Agent for St. Johns County, FL.
Co-authors
KM

Kelly Morgan

UF/IFAS CALS
NA
SA

Shinsuke Agehara

University of Florida CALS
Thursday September 26, 2024 9:30am - 9:45am HST
Coral 2

10:00am HST

Workshop: Personifying Tomorrow's Clients: Transforming Data into Tools for Reaching Consumer Horticulture Audiences
Thursday September 26, 2024 10:00am - 12:00pm HST
Whether marketing to a horticulture consumer or educating them, understanding motivations is crucial. In 2023, a nationwide survey of gardening consumers conducted by a regional team of horticulture researchers provided key insights into how backgrounds and experiences impacted motivations of horticulture consumers. Cluster analysis performed on the data provides the ability to group consumers in terms of their interest and spending to enable more tailored education or marketing efforts. This workshop will investigate the key characteristics of those ten groups according to demographics, experience, motivation, and spending and integrate the experience and insight of attendees to best utilize the survey information. The goal of this highly interactive workshop will be to develop representative avatars and actionable outreach and marketing ideas that can be integrated into Extension programming as well as used to equip garden centers and horticultural businesses to be intentional and effective in reaching, educating, and retaining these new consumers. Horticulture professionals with research, Extension, teaching, and/or business focuses are all invited to attend and aid in honing audience descriptions based on current data. This session will set the stage for developing more tools to support Consumer Horticulture outreach and marketing to current and future audiences.

This workshop is grounded in current research findings and will focus on turning findings into tools that can be used by a wide range of ASHS professionals to reach current and future audiences.

Engage a diverse set of Horticulture professionals and define up to 10 core target audiences in today's horticultural market whether that is a retail business, classroom, or other outreach program.

This session will have minimal large-group presentation time. Six team leaders will break the audience into small groups based on interests and lead them through a series of prompts to assign descriptors to different audiences as defined by recent survey data. Participants will aid in coding different types of audience members, report out to the larger group, and group work will be cross-checked to determine key target audiences and best methods of communication with each.

Coordinator(s)
  • Kristine Lang, South Dakota State University, Agronomy, Horticulture, and Plant Science, Brookings, South Dakota, United States
Moderator(s)
  • Gerald Burgner, Texas A&M University, United States
  • Natalie Bumgarner, University of Tennessee, Plant Sciences, Knoxville, TN, United States
  • Sheri Dorn, University of Georgia, United States
  • Heather Kirk Ballard, Louisiana State University, United States
  • Julie Campbell, University of Georgia, Horticulture, Athens, Georgia, United States

Moderator
NB

Natalie Bumgarner

Assistant Professor, University of Tennessee Knoxville
KL

Kristine Lang

South Dakota State University
Thursday September 26, 2024 10:00am - 12:00pm HST
Coral 2

12:14pm HST

Water Utilization and Management 3 (WUM 3)
Thursday September 26, 2024 12:14pm - 2:15pm HST
Assessing Grapefruit Responses to Different Irrigation Rates for Managing Salinity Water Under Greenhouse-Controlled Conditions - Neus Alcon Bou
Irrigation trials examine yield, water productivity, and nitrogen uptake of summer cauliflower - Michael Cahn
Growth Morphology as Indicators of Salt Water Tolerance in Watermelon Cultivars - Azeezahmed Shaik
Assessment of Salinity Tolerance in Cucumber Cultivars Using NFT System - Azeezahmed Shaik
Influence Of Deficit Irrigation And Biochar Application On Soil Water Depletion, Roots Distribution, And Water Use Efficiency Of Cucumber - Sukhbir Singh
Assessing Resource-use Efficiency Affected by Irrigation Management Practices in Processing Onion Production - Ali Montazar
Glyphosate Runoff Impacting Water Quality - Natalie Santos
Assessing Drip Irrigation as an Alternative to Micro-sprinklers During Strawberry Establishment in Southern California - Andre Biscaro
Moderator
AB

Andre Biscaro

UC Cooperative Extension
Thursday September 26, 2024 12:14pm - 2:15pm HST
Coral 2

12:15pm HST

WUM 3 - Assessing Grapefruit Responses to Different Irrigation Rates for Managing Salinity Water Under Greenhouse-Controlled Con
Thursday September 26, 2024 12:15pm - 12:30pm HST
Coastal agriculture frequently relies on surface water for irrigation. However, in Florida, surface water availability can become limited during the dry season, leading growers to switch to groundwater. Groundwater in coastal areas often contains high salt concentrations which can negatively affect crop production. Citrus species, one of the most cultivated crops in Florida, are sensitive to salt stress. Among other strategies, irrigation management is used to mitigate salinity buildup in soil by leaching salts away from the root zone. Increased irrigation rates with water sources in the ‘slight’ to ‘moderate’ range of salinity (0.7 to 3 dS/m) have been shown to reduce salt accumulation in the soil without affecting production. However, when the water has high salinity concentrations (>3 dS/m), increasing the irrigation rate beyond 125%-130% of the crop evapotranspiration (ETc) is not sustainable due to the high-water usage. Conversely, a limited volume of water applied for leaching the salts can exacerbate the accumulation. In coastal Florida, where often only high salinity water is available during the dry season, evaluating short-term strategies to maintain crop production is crucial. The objective is to understand how irrigation water with high salinity concentrations and different irrigation rates impact plant performance and soil salinity accumulation. In this study, one-year-old ‘Ruby Red’ grapefruit trees grafted on ‘US-942’ rootstock were planted in a weighing lysimeter phenotyping platform (“Plant Array”) under greenhouse-controlled conditions. Irrigation water with high salinity concentration (5 dS/m) was precisely applied at three different irrigation rates: 75% (deficit), 100% (regular), and 125% (excessive) of the ETc. A control treatment with water at a low salinity concentration (0.3 dS/m) was applied at 100% ETc for comparison. Transpiration, plant net weight, soil moisture and soil electrical conductivity (EC) were recorded daily. Bulk leaf water potential, osmotic potential, and dark-adapted chlorophyll fluorescence were measured at the beginning and at the end of the experiment. Results showed that ETc and net weight decreased for those plants irrigated with high salinity concentration compared to the control. Salt EC was higher for those trees irrigated with 75% ETc under high salinity concentration resulting in the lowest ETc rates. Plants irrigated with 100% and 125% ETc rates showed similar results, likely due to decreasing transpiration of trees upon high salinity treatment application. Different plant performance under different irrigation rates emphasized the need of evaluating irrigation strategies in mitigating salt stress in citrus, particularly in region with limited water resources.
Speakers
NA

Neus Alcon Bou

University of Florida
Co-authors
GS

Gerard Sapes

University of Florida
NA
JF

John-Paul Fox

University of Florida
LR

Lorenzo Rossi

University of Florida
SG

Sandra Guzman

University of Florida
NA
WH

William Hammond

University of Florida
NA
Thursday September 26, 2024 12:15pm - 12:30pm HST
Coral 2

12:30pm HST

WUM 3 - Irrigation trials examine yield, water productivity, and nitrogen uptake of summer cauliflower
Thursday September 26, 2024 12:30pm - 12:45pm HST
Replicated irrigation trials were performed on cauliflower (Brassica oleracea var. botrytis cv. Symphony) in California’s Salinas Valley during 2018 and 2019. The CropManage online decision-support system was used to guide evapotranspiration-based irrigation scheduling. Overhead sprinklers were used to establish the crop with 60-70 mm of water, followed by surface drip for the remaining crop cycle. A randomized complete block design, with six replications, was used to administer four treatments near 50%, 75%, 100% and 150% of estimated full crop water requirement (T50, T75, T100, T150) during the drip phase. An additional drip treatment at 125% (T125) was added in 2019. Applied water totals across treatments ranged from 199-410 mm in 2018 and 179-369 mm in 2019 (plus 35 mm of precipitation). No significant differences were observed between total curd (head) yields from T100 and T150 in year 1 (> 30 Mg ha-1), although marketable yield from T150 was greater. Total yield of T100 and T125 were significantly greater than T150 during year 2, but marketable yield was similar among T100-T150. No significant difference was observed in fresh or aboveground dry biomass production from T100 and T150. Significant reductions in yields and biomass production were observed in T50 and T75 for both years. T100 and T150 had the highest irrigation water productivity with respect to marketable yield. Nitrogen uptake and fertilizer N recovery were highest in T100 and T150 during 2018, but no significant treatment differences were observed in 2019. These field trials demonstrated that estimating crop evapotranspiration and irrigation requirements of cauliflower through a decision support service such as CropManage can be a reliable tool for irrigation scheduling.
Speakers
MC

Michael Cahn

UC Cooperative Extension
Co-authors
LJ

Lee Johnson

NASA ARC-CREST/California State University Monterey Bay
NA
SB

Sharon Benzen

USDA-ARS
NA
Thursday September 26, 2024 12:30pm - 12:45pm HST
Coral 2

12:45pm HST

WUM 3 - Growth Morphology as Indicators of Salt Water Tolerance in Watermelon Cultivars
Thursday September 26, 2024 12:45pm - 1:00pm HST
Saltwater intrusion into coastal areas is a major problem that reduces acreage under vegetable production. Cultivating salt-tolerant varieties is one of the approaches to overcome this problem. The long-term goal of this project is to screen and identify salt-tolerant watermelon germplasm. We assessed the impact of salinity stress from natural brackish water collected in Charleston, South Carolina (32o47’38” N and 80o3’25” W), on the growth morphology of four watermelon cultivars to identify one discriminatory concentration to be used for evaluating hundreds of watermelon accessions available in USDA-ARS Germplasm Resources Information Network. Watermelon plants were hydroponically grown in a Nutrient Film Technique (NFT) system at various EC levels (natural brackish water diluted with de-ionized water to generate 5.5, 10, 12, 14, and 19 dS/m and control, 0 dS/m) and plant growth and shoot morphology were monitored. All cultivars failed to withstand salinity stress at 19 dS/m. Surprisingly watermelon cultivars tolerated fairly high levels of salinity (5.5-14 dS/m ⁓3,530 - 8,960 ppm salt concentration) with inhibited growth. Increasing EC levels correlated with decreased growth parameters such as plant height, leaf number, and shoot fresh and dry weight. Chlorophyll content and electrolyte leakage values increased with higher brackish water concentrations, peaking at 14 dS/m. These values were notably elevated, with chlorophyll content and electrolyte leakage being 5 and 2 times higher than the control, respectively. Cultivar Sugar Baby had significantly greater shoot length, chlorophyll content, and electrolyte leakage compared to other cultivars (Crimson Sweet, Charleston Grey, and Black Diamond). The other growth parameters were similar across all cultivars. Further research to identify an optimal EC between 14 and 19 dS/m for use in large-scale evaluation of germplasm accessions will be needed.
Speakers
AS

AZEEZAHMED SHAIK

Clemson University
Co-authors
Thursday September 26, 2024 12:45pm - 1:00pm HST
Coral 2

1:00pm HST

WUM 3 - Assessment of Salinity Tolerance in Cucumber Cultivars Using NFT System
Thursday September 26, 2024 1:00pm - 1:15pm HST
Increasing salinity levels pose significant challenges to coastal vegetable cultivation, particularly impacting salt-sensitive crops like cucumber, leading to reduced growth, development, yield, and quality. This study assessed the responses of six commercial cucumber cultivars to different salinity levels. Cucumber plants were grown in a hoop house hydroponically using various dilutions of brackish water in a Nutrient Film Technique (NFT) system at EC levels 3, 6, and 12 dS/m, along with adequate controls (0 dS/m). Increasing salinity levels caused a significant decline in plant growth parameters (shoot length, biomass, leaf number). Overall a 59% reduction in shoot length and 52% decrease in dry biomass was observed at 12 dS/m compared to control. The cultivar, Stripped Armenian had significantly greater shoot length (163 cm) and dry biomass (59 g), compared to the others (Diva, Katrina, Lemon, H-19 Little Leaf, and Suyolong) by 52-207% and 126-409%, respectively. Additionally, Stripped Armenians dry weight exceeded the control by 120%, 115%, and 25% in 3, 6, and 12 dS/m treatments, respectively. Gaseous exchange parameters measured with Licor 6850 (photosynthetic rate, stomatal conductance, transpiration rate, and intercellular CO2 concentration) declined significantly with increasing salinity at vegetative and reproductive stages. The photosynthetic rate and stomatal conductance showed reductions of 15-17% and 13-50%, at salinity levels of 3 dS/m, 6 dS/m, and 12 dS/m, compared to the control treatment respectively. Similar reductions were also observed at the reproductive stage. Stripped Armenian consistently exhibited higher photosynthetic rate (4-27%), stomatal conductance (7-75%), and transpiration rate (6-56%) compared to other cultivars at vegetative and reproductive stages. In conclusion, Stripped Armenian demonstrated substantial tolerance to 12 dS/m salinity compared to other cultivars and may prove useful in saline environments, however further research is needed.
Speakers
AS

AZEEZAHMED SHAIK

Clemson University
Co-authors
Thursday September 26, 2024 1:00pm - 1:15pm HST
Coral 2

1:15pm HST

WUM 3 - Influence Of Deficit Irrigation And Biochar Application On Soil Water Depletion, Roots Distribution, And Water Use Effic
Thursday September 26, 2024 1:15pm - 1:30pm HST
A rapid decline in water table of the Ogallala aquifer necessitates water conservation farming practices in Texas High Plains (THP). Deficit irrigation (DI) and biochar amendment strategies are widely adopted to sustain agriculture in semi-arid regions like THP. Although these practices are studied individually, research involving the combined effect of these factors is lacking, especially in THP. The goal of this study was to investigate the effect of DI and biochar application on soil water depletion, root distribution, and water use efficiency of cucumber in West Texas. A two-year field study was conducted in a split-plot design with irrigation levels as the main plots: I1[100% crop evapotranspiration (ETc) replacement before mid-season (EBM))-100% ETc replacement after mid-season (EAM), I2 (80% ETc EBM- 60% ETc EAM), I3 (60% ETc EBM - 80% ETc EAM), I4 (40% ETc EBM-40% ETc EAM)] and biochar rates [ 0 t/ha,15 t/ha, and 20 t/ha] as sub-plots with four replications. Results showed that I4 had the largest and I1 had the least soil water depletion, and the differences in water depletion among irrigation levels were significant up to 1-m soil depth. Root length density (RLD) and root surface area density (RSAD) were significantly higher in I1 followed by I2 and I3, and these parameters were the least in I4. Water Use Efficiency (WUE) showed I2 being the most water productive DI treatment with an average increase of 5% compared to I1. Biochar didn't influence water depletion, RLD, and WUE but significantly increased RSAD compared to non-amended plots. Thus, deficit irrigation level I2 can be a potential alternative irrigation to full irrigation for enhancing water productivity of cucumber in the THP. More pronounced biochar effects could be expected in long term studies.
Speakers
avatar for Sukhbir Singh

Sukhbir Singh

Texas Tech University
NA
Co-authors
AK

Arjun Kafle

Texas Tech University
CS

Catherine Simpson

Texas Tech University
NA
GR

Glen Ritchie

Texas Tech University
NA
MS

Manpreet Singh

University of California Agriculture and Natural Resources
NA
PB

Preetaman Bajwa

Texas Tech University
NA
SD

Sanjit Deb

Texas Tech University
NA
Thursday September 26, 2024 1:15pm - 1:30pm HST
Coral 2

1:30pm HST

WUM 3 - Assessing Resource-use Efficiency Affected by Irrigation Management Practices in Processing Onion Production
Thursday September 26, 2024 1:30pm - 1:45pm HST
This study aimed at conducting an impact evaluation of irrigation management practices in processing onion production. A three-year experiment was carried out in 15 commercial processing onion fields under different irrigation methods of furrow, solid-set sprinkler, and subsurface drip. The experimental sites were located in the Imperial Valley, California’s low desert region. All fields were on a 40-inch bed, six plant rows per bed with a spacing of 2.5-in between planting lines. The fields had a variable soil type with predominate soil texture from fine sandy to silty clay loam. Water, nitrogen, and energy used, bulb weights, soil moisture, soil nitrate and salinity, and actual evapotranspiration were measured in each site. A wide range of seasonal irrigation water applied was observed across the experimental sites. Irrigation water applied varied from 3.3 ac-ft/ac in a drip irrigated field to 6.9 ac-ft/ac in a furrow irrigated field. The results demonstrated that utilizing subsurface drip irrigation in processing onions could conserve 0.8 and 2.4 ac-ft/ac water in compared with solid-set sprinkler and furrow irrigation systems, respectively. The water productivity, the ratio of onion bulb weight to water applied, was determined 4.9, 4.3, and 2.7 t/ac-ft for the drip, sprinkler, and furrow irrigated fields, respectively. A greater nitrogen use efficiency was found in the drip irrigated fields compared to the sprinkler (15.2% points) and furrow (62.1% points) irrigated fields. The findings illustrated a higher salt accumulation on the topsoil (0-6 in. depth) in the drip irrigated fields. In other words, drip irrigation could cause salinity impacts in desert processing onions, and therefore, more frequent light irrigation events may be an effective tool to manage salinity. More nitrate leaching was also observed from the topsoil in the sites irrigated by sprinklers. Energy productivity, the ratio of onion bulb weight to fuel consumption, was 48.3% points higher in the drip fields than the sprinkler fields. The results revealed that irrigation practice has a significant impact on resource-use efficiency and environmental issues.
Speakers
AM

Ali Montazar

University Of California Cooperative Extension
Thursday September 26, 2024 1:30pm - 1:45pm HST
Coral 2

1:45pm HST

WUM 3 - Glyphosate Runoff Impacting Water Quality
Thursday September 26, 2024 1:45pm - 2:00pm HST
Glyphosate is the most widely used herbicide in the world due to its relevance in agricultural practices and urban lawncare. While this herbicide is prominent in various countries, it has been continuously surrounded by controversy for the past decade. With reports of potential dangers to human health, contradicting reports from government agencies, and lawsuits against the company Monsanto, the creator of Roundup whose key active ingredient is glyphosate, there is opinion-based literature and confusion among the public. There is a plethora of published literature discussing what glyphosate is and the potential dangers to the environment; however, there is minimal research on the effects glyphosate has on water quality through runoff in urban areas. This research is aimed to assess the presence of glyphosate and its degradation product aminomethylphosphonic acid (AMPA) in the waterways of Stillwater, OK. This is done by collecting water samples where runoff was present in urban areas. It is important to understand the presence of glyphosate in runoff to view the persistence of this chemical within waterways and different environments. Keywords: glyphosate, AMPA, water quality, runoff, controversy, samples
Speakers
NS

Natalie Santos

Oklahoma State University
Co-authors
JM

Justin Moss

Oklahoma State University
NA
Thursday September 26, 2024 1:45pm - 2:00pm HST
Coral 2

2:00pm HST

WUM 3 - Assessing Drip Irrigation as an Alternative to Micro-sprinklers During Strawberry Establishment in Southern California
Thursday September 26, 2024 2:00pm - 2:15pm HST
The escalating regulatory pressure to achieve sustainable groundwater use in California will demand improved irrigation efficiency. Even though approximately 80 to 90% of the sprinkler-applied water to a strawberry crop is lost through runoff, deep percolation and evaporation, all the strawberry fields in Ventura County are still irrigated with overhead sprinklers during crop establishment. This study quantified differences in water use, yield, canopy coverage and root depth between drip tape and micro-sprinkler irrigation during crop establishment at a commercial field located in Oxnard, CA during the 2023-2024 growing season. Treatments consisted of three irrigation methods used during the first five weeks: 1) primarily drip tape (DT), 2) micro-sprinklers only (MS), and 3) a combination of drip tape and micro-sprinklers (C). The irrigation scheduling of the MS treatment was defined by the irrigator (grower standard), while the DT and C treatments were guided by tensiometers and field observations. All other production practices remained the same. Each treatment was replicated four times in a randomized complete block design, with an area of approximately 1.7 acre per plot (40 beds of 350ft long). Treatments were carried out for 35 days from planting (Oct 5), after which drip irrigation became the only irrigation method. Total water use during establishment was very similar among treatments: 3.9, 3.6 and 4.0 acre-in for DT, C and MS, respectively. With four plant rows and three drip lines per bed, the DT treatment was irrigated for longer than anticipated to assure uniform soil moisture around the plant roots. Marketable yield until Mar 14 was 4,583, 4,229 and 4,297 lb/acre for DT, MS and C, respectively. Although not statistically significant, DT yield was 8.4% greater than MS (p-value = 0.802), and 6.7% greater than C (p-value = 0.865). Canopy cover trends were very similar between DT and C, while MS was between 13 and 29% lower than DT from 48 to 61 days after planting. Canopy coverage equalized at 90 days after planting after significant precipitation during Dec and Jan. Average root depth of DT was 38 and 19% greater than MS for 15 and 28 days after planting, respectively. In summary, this study found equal or superior crop performance of DT compared to MS during strawberry establishment. We expect that increasing the number of drip tape per bed from three to four would significantly decrease the irrigation time needed to provide ideal soil moisture, consequently decreasing water use.
Speakers
AB

Andre Biscaro

UC Cooperative Extension
Co-authors
MV

Maripaula Valdes Berriz

University of California Cooperative Extension
NA
OD

Oleg Daugovish

University of California Cooperative Extension
RC

Raul Coronado

GoodFarms
NA
SZ

Siomara Zendejas

University of California Cooperative Extension
NA
Thursday September 26, 2024 2:00pm - 2:15pm HST
Coral 2

2:30pm HST

Workshop: Climate Impact on Tree Nut Crops
Thursday September 26, 2024 2:30pm - 4:30pm HST
This workshop will explore topics related to climate change impacts on temperate tree nut crops, including drought, salinity, freeze issues, and other environmental stressors. Additionally, participants will be given the opportunity to discuss relevance of topics to their specific commodity and share insights and suggestions with fellow researchers.

In this workshop we will be bringing in experts in pistachio and pecan cultivation to share their cutting-edge research and insights into mitigating the challenges posed by climate change. These esteemed speakers, who have dedicated their careers to understanding and addressing these issues, will provide valuable insight to workshop attendees and jumpstart discussion on this topic within groups. Attendees will have the opportunity to discuss relevant issues of climate change on their crop within small groups before bringing ideas to the entire group.

The impact of climate change on tree nut crops is likely to be significant, given expected decreases in chilling, increased droughts, and fluctuations in winter temperatures leading to decreases in production if mitigation measures are not implemented.

In this workshop, we seek to foster fruitful discussion among researchers working with tree nuts and other orchard crops likely to be impacted by climate change in order to brainstorm solutions and targets for future research in this topic area.

Coordinator(s)
  • Lu Zhang, Oklahoma State University, Stillwater, OK, United States
  • David Hlubik, Rutgers University, United States
  • Phoebe Gordon, University of California Cooperative Extension, Madera, CA 93638, Madera County, United States
Speaker/Participant(s)
  • Louise Ferguson, University of California Davis, Extension Specialist, Davis, California, United States
    Climate Impact on Tree Nut Crops - Pistachio Salinity (30 mins)
    Summary: Dr. Louise Ferguson is an Extension Specialist at University of California Davis with several decades of experience in pistachio and other orchard crops and will be speaking on pistachio salinity.
  • Richard Heerema, New Mexico State University, Extension Specialist, Las Cruces, New Mexico, United States
    Climate Impact on Tree Nut Crops - Drought in Pecan (30 mins)
    Summary: Dr. Richard Heerema is an Extension Specialist at New Mexico State University with a focus on pecans and will be speaking on drought in pecan.
  • Xinwang Wang, USDA ARS, College Station, TX, United States
    Climate Impact on Tree Nut Crops - Pecan Breeding Associated with Climate Change (30 mins)
    Summary: Dr. Xinwang Wang is a Research Geneticist for USDA ARS in College Station, TX and will be discussing challenges in pecan breeding associated with climate change.



Moderator
LZ

Lu Zhang

Oklahoma State University
Speakers
Thursday September 26, 2024 2:30pm - 4:30pm HST
Coral 2

4:45pm HST

Engaging those who fund our work, a job for all horticultural scientists
Thursday September 26, 2024 4:45pm - 6:00pm HST
Sponsored by National Issues Committee
Our work in horticulture is made possible to a great extent by Federal funding. That funding will only be available if Congress continues to value the work that we do with it. Therefore, all ASHS members should regularly let their representatives know how the funds are helping in your state or district. This session provides an understanding of how to confidently and effectively contact your Congressional district office about the value of programs that you know and use. This program is designed to be of particular value to members in the Western US, who are not likely to come to Washington DC for policy discussion.

This session will be a panel discussion to understand the perspective from the various offices involved and how they interact. The panel includes the actual people involved in this Congressional district.
  • Kendra Oishi, District Chief, Office of U.S. Representative Jill Tokuda, Hawaii 2nd District.
  • Anthony Ching, Director of Federal Relations for the University of Hawaiʻi System.
  • Thomas Björkman, ASHS National Issues Committee and Cornell University
  • Russell Galanti, Extension Educator, University of Hawaiʻi.
Moderator
TB

Thomas Bjorkman

Professor, CALS Horticulture
Speakers
KO

Kendra Oishi

District Chief, Office of U.S. Representative Jill Tokuda
AC

Anthony Ching

Director of Federal Relations, University of Hawaiʻi System
RG

Russell Galanti

Extension Educator, University of Hawaiʻi
Thursday September 26, 2024 4:45pm - 6:00pm HST
Coral 2
 
Friday, September 27
 

10:00am HST

Workshop: Preparing for AI in Postharvest Research
Friday September 27, 2024 10:00am - 12:00pm HST

Explore cutting-edge techniques, tools, and strategies to integrate artificial intelligence (AI) into postharvest research. Learn how AI can enhance data analysis, optimize storage conditions, and improve quality assessment for fruits and vegetables. During this workshop, we’ll delve into organizing datasets, determining the number of variables, and understanding their types. Join us to stay ahead in the rapidly evolving field of postharvest science. Join us for this dynamic workshop, where experts share insights, foster collaboration, and propel postharvest science into the future! 🌱

The goal of this workshop is to empower researchers, practitioners, and industry professionals with the knowledge and tools needed to revolutionize postharvest practices. By integrating artificial intelligence (AI) and non-destructive technologies, we aim to achieve the following objectives: 1. Enhanced Quality Control 2. Efficient Resource Management 3. Scientific Advancements 4. Sustainable Practices 5. Industry Transformation

Coordinator(s)
  • Randolph Beaudry, Michigan State University, Horticulture, East Lansing, Michigan, United States
  • Angelos Deltsidis, University of Georgia, Horticulture, Tifton, GA, United States
Moderator(s)
  • Angelos Deltsidis, University of Georgia, Horticulture, Tifton, GA, United States
Speaker/Participant(s)
  • Carolina Torres, Washington State University, Wenatchee, Washington, United States
    Introduction (10 minutes) Welcome and Objectives (10 mins)
    Summary: Overview of AI applications, emphasizing data analysis, optimization, and quality assessment and discuss principles for designing experiments that maximize AI potential.
  • Luan Oliveira, University of Georgia, Tifton, Georgia, United States
    Remote Sensing and AI (20 mins)
    Summary: Explore how remote sensing, combined with AI algorithms, accelerates data processing for fruits and vegetables.
  • Pavlos Tsouvaltzis, Southwest Florida Research and Education Center, University of Florida, United States
    Non-Destructive Technologies (20 mins)
    Summary: Delve into advanced non-destructive methods for assessing vegetable crop physiology, quality, and safety.
  • Loren Honaas, USDA ARS TFRL, United States
    AI in Molecular Biology (20 mins)
    Summary: Discuss molecular indicators related to postharvest tree fruit disorders using AI techniques.

Moderator Speakers
CT

Carolina Torres

Washington State University
RB

Randolph Beaudry

Michigan State University
Dr. Randolph Beaudry, Professor, MSU Department of Horticulture (MSc, PhD, University of Georgia). His appointment is 50% MSU Extension and 50% AgBioResearch. His research program includes both regional and international projects and focuses on the physiology of plant responses to... Read More →
Friday September 27, 2024 10:00am - 12:00pm HST
Coral 2

12:14pm HST

Ornamentals/Landscape and Turf 2 (O/LT 2)
Friday September 27, 2024 12:14pm - 1:25pm HST
Impact of Lawn Age on Soil Organic Matter, Microbial Respiration, and Nitrogen Mineralization - Alex Lindsey
Effect of Organic Fertilizers and Biostimulants on ‘TifEagle’ Bermudagrass Greens - Marco Schiavon
Detection of QTL Associated with Morphological, Adaptive, and Reproductive Traits in Common Bermudagrass - Shuhao Yu
Alternate Products to Control Silvery Thread Moss in a Creeping Bentgrass Putting Green - Shehbaz Singh
Evaluation of Gypsum and Fertilizers for Enhanced Bermudagrass Performance Under Salinity Conditions in Florida Sandy Soils - Idalia Sierra
Cold-hardiness, Flowering, and Disease Resistance of 24 Camellia Cultivars and Selections in Tennessee, USA - Jacob Shreckhise
The American Rose Trials for Sustainability® (A.R.T.S.®) Program Announces Five Winning Roses for 2025 - Kristine Lang

Moderator
SY

Shuhao Yu

Oklahoma State University
Friday September 27, 2024 12:14pm - 1:25pm HST
Coral 2

12:15pm HST

O/LT 2 - Impact of Lawn Age on Soil Organic Matter, Microbial Respiration, and Nitrogen Mineralization
Friday September 27, 2024 12:15pm - 12:25pm HST
Aesthetically appealing and ecosystem servicing turfgrass lawns require proper nutrition and adequate water, which are generally provided by fertilization and supplemental irrigation. However, mismanaged fertilizer and irrigation practices can lead to nutrient losses to the environment, especially nitrogen (N). Model simulations suggest that as the age of the turf stand increases it may be possible to reduce N fertilization and still maintain acceptable turf quality. This is likely due to increases in soil organic matter with turf maturation, which has the potential to provide plant-available N. However, little research has been performed on carbon (C) sequestration and N mineralization in urban residential soils in Florida. It is hypothesized that as lawn age increases it will result in greater C sequestration, microbial activity, and N mineralization. This study was conducted at Lakewood Ranch, FL. Soil samples were collected from lawns with the following ages: 1, 3, 5, 10, 15, and 20 years old. The soil samples were sieved, homogenized, and air-dried prior to soil analysis. Soil analysis included soil organic matter (loss-on-ignition), microbial activity (potentially mineralizable C), and N mineralization (potentially mineralizable N). Data was subjected to analysis of variance (ANOVA) and treatment mean comparisons were separated using Fisher's least significant difference (LSD) at the p ≤ 0.05 level. Lawn age had an impact on soil organic matter, microbial activity, and N mineralization. In general, as a lawn ages, especially after 5 years, it increases the soil organic matter, microbial respiration, and N mineralization. This is the first-year data and a second year with multiple locations will be evaluated to confirm results. Future studies will involve optimizing fertilizer and irrigation recommendations for lawns of various ages.
Speakers
AL

AJ Lindsey

University of Florida
Friday September 27, 2024 12:15pm - 12:25pm HST
Coral 2

12:25pm HST

O/LT 2 - Effect of Organic Fertilizers and Biostimulants on ‘TifEagle’ Bermudagrass Greens
Friday September 27, 2024 12:25pm - 12:35pm HST
Turfgrass areas and golf industry have been under scrutiny for their potential impact on the environment, but more environmentally friendly organic fertilizers are increasingly being used to reduce and replace some inorganic fertilizers. A study was conducted on an 8-year-old ‘Tifeagle’ ultradwarf bermudagrass green mowed daily at 0.125 in. located at the University of Florida’s Fort Lauderdale Research and Education Center, Davie, FL to evaluate the effect organic fertilizers and biostimulants on turfgrass performance of Tifeagle’ bermudagrass green. Treatments included: a) XP Stress Rx (applied at 6 6 fl oz./1000 sq. ft.); b) XP-N Stress Rx (applied at 6 6 fl oz./1000 sq. ft.); XP-N Stress Rx Nautilus NuRelease (applied at 6 6 6 0.35 fl oz./1000 sq. ft.). Initial treatment was applied on June 1, 2023, with subsequent applications every 14 days for a total of nine applications. Data was collected every two weeks until three weeks after final application. Turf quality was measured on a 1-9 scale with 9=dark green dense turf, 1=dead/brown turf, and 6=minimally acceptable turf; Normalized Difference Vegetation Index (NDVI) was assessed using a RapidSCAN CS-45; percent green cover and Dark Green Color Index (DGCI) were assessed through Digital Image Analysis of one image taken per plot; volumetric water content was measured at a 3-inch depth using a time domain reflectance sensor. During the summer turfgrass quality, NDVI and DGCI were affected by treatment applications during five of the rating days. Overall, turfgrass fertilized with XP Stress Rx, XP-N Stress Rx and XP-N Stress Rx Nautilus NuRelease showed a higher quality, NDVI and DGCI compared to the unfertilized. Volumetric water content was affected by treatments only after the first application, and no differences were found thereafter. When temperature dropped, and up to three months after last application, biostimulants had a tremendous effect on ultradwarf bermudagrass health preventing the grass from Curvularia spp. infection and helping turfgrass maintaining quality and functionality through the winter.
Speakers
MS

Marco Schiavon

University of Florida
Co-authors
AS

Alejandra Sierra

University of Florida
Friday September 27, 2024 12:25pm - 12:35pm HST
Coral 2

12:35pm HST

O/LT 2 - Detection of QTL Associated with Morphological, Adaptive, and Reproductive Traits in Common Bermudagrass
Friday September 27, 2024 12:35pm - 12:45pm HST
Cynodon dactylon (L.) Pers. is frequently used as turf and to cross with C. transvaalensis Burtt-Davy in the creation of F1 hybrid cultivars that are widely used on home lawns, golf courses, and sports fields worldwide. However, molecular information associated with adaptive and morphological traits in this species is limited. Accordingly, the objectives of this study were to identify genomic regions associated with establishment rate, spring green-up, drought response, leaf length and width, and stem internode length and width. In this study, we used a ‘A12359’ common bermudagrass high-density linkage map constructed with 3,544 markers. A total of 130 first-generation selfed progeny were evaluated in the field for two seasons for adaptive and morphological traits. A total of 36 genomic regions were identified to be associated with morphological, adaptive, and reproductive traits . The results provide important genetic resources towards understanding the molecular information associated with target traits as well as provide a foundation for using marker-assisted selection in bermudagrass breeding.
Speakers
SY

Shuhao Yu

Oklahoma State University
Friday September 27, 2024 12:35pm - 12:45pm HST
Coral 2

12:45pm HST

O/LT 2 - Alternate Products to Control Silvery Thread Moss in a Creeping Bentgrass Putting Green
Friday September 27, 2024 12:45pm - 12:55pm HST
Silvery thread moss (Byrum argenteum Hedw.) and others are considered cosmopolitan weeds of creeping bentgrass (Agrostis stoloniferous L.) golf putting greens. These putting green surfaces are vulnerable to moss infestations due to low mowing height, plant growth regulator applications, and restricted nitrogen all required for maintenance. On the actual putting surface, moss interrupts both golf ball roll and visual aesthetics. As a bryophyte, moss is a primitive photosynthetic plant without true leaves or roots and reproduce both sexually (sporophyte) and asexually (fragmentation). Early detection in putting greens is difficult because the protonema (the early stage of moss) resemble blue-green algae or Cyanobacteria. Once established, mosses can tolerate a range of environments from cool-to-hot, and wet-to-dry. Thus, mosses are a chronic problem of creeping bentgrass putting greens. In the past decade, the herbicide carfentrazone (QuickSilver; FMC Corp., Philadelphia, PA) has become the dominant strategy to suppress moss in putting greens, but requires multiple spray applications for efficacious control. In 2023 and 2024, a field study was conducted using a 25-year-old ‘L-93’ plus ‘Providence’ creeping bentgrass nursery green at North Shore Country Club (Glenview, IL). The objective was to explore moss control by two new granular products: Fiesta (chelated iron) and Castaway (tea saponin), both from The Andersons Inc. (Maumee, OH). Granular treatments at product label rate and QuickSilver at 3.35 fl oz/A were applied every 14 days for a total of 8 applications. QuickSilver was applied using a CO2-powered backpack sprayer operated at 40 psi with a three nozzle boom of XR TEEJET 8004VS applied in 2 gal water carrier/1000 sq ft. Year one evaluated granular products versus QuickSilver. Year two compared an additional standard of a once-applied spot treatment of baking soda (sodium bicarbonate) in solution. Both trials were arranged as a randomized complete block design with four replications per treatment. In 2023, Untreated, QuickSilver, Castaway, and Fiesta were evaluated. In 2024, two additional treatments were included of ½ rate Fiesta, and baking soda.. The results indicate that both Castaway and Fiesta granular products were capable of moss suppression in a putting green. Moss control with Fiesta was similar to the QuickSilver herbicide standard or spot treatment by baking soda. Therefore, these granular products could be used alone or in rotation with QuickSilver to control moss in golf course putting greens
Speakers
SS

Shehbaz Singh

Manager of Turfgrass research, Chicago District Golf Association
Co-authors
DS

Derek Settle

Chicago District Golf Association
NA
Friday September 27, 2024 12:45pm - 12:55pm HST
Coral 2

12:55pm HST

O/LT 2 - Evaluation of Gypsum and Fertilizers for Enhanced Bermudagrass Performance Under Salinity Conditions in Florida Sandy Soils
Friday September 27, 2024 12:55pm - 1:05pm HST
Coastal regions, facing saltwater intrusion due to overpumping, exacerbate challenges for turf managers facing soil salinization, and sodium and bicarbonate hazards. Given the prevalence of gypsum applications to counter sodium hazard and the utilization of acidifying fertilizers for neutralizing bicarbonate hazards, there is a need to comprehensively evaluate the effectiveness of these strategies in alleviating soil salinity and bicarbonate hazards and their impact on turfgrass performance. An 8-week study was conducted at the University of Florida’s Fort Lauderdale Research and Education Center to assess the impact of ammonium sulfate and calcium nitrate, either alone or in combination with gypsum, on turfgrass performance and soil properties of a ‘Celebration’ bermudagrass fairway under salinity conditions. To replicate high salinity conditions, table salt (NaCl) was applied to half of the area at a rate of 5 lb of NaCl 1000 ft-2, with the rest of the area serving as a control. Gypsum was applied at a rate of 230 lb gypsum 1000 ft-2 and divided in two applications at mid-point (week 3) and prior to completion of the study (week 7). Fertilizers were applied at a rate of 0.5 lb N/1000 ft2. Salt and fertilizer were applied every two weeks, alternating between each other, for a total of four applications each. Experimental design was a split-split-split design with four replications, with salt serving as a main plot, gypsum as a sub-plot and fertilizer treatment as a sub-sub-plot. Turfgrass visual quality (1=worst, 9=best), normalized difference vegetation index (NDVI), percent green cover, and dark green color index (DGCI), turf injury, volumetric water content (VWC) and electrical conductivity (EC) were assessed weekly. Gypsum had no effect on turfgrass performance. Plots fertilized with AMS initially showed a higher quality than plots fertilized with calcium nitrate after fertilization, however no differences were found toward the end of the trial. Salt reduced turfgrass quality, NDVI and percent green cover and resulted in turfgrass injury, particularly following initial applications. However, it appears that the turfgrass gradually adapted to the salinity conditions, as turfgrass injury from salt decreased during the second half of the experiment. Volumetric water content and EC were affected by the interaction of salt and gypsum. During the experiment, plots treated with gypsum and salt consistently exhibited higher VWC and EC compared to plots that did not receive gypsum. Results suggest that disproportioned amounts of gypsum to improve turfgrass performance applied to golf courses are not justified.
Speakers
IA

I. Alejandra Sierra

University of Florida
Co-authors
MS

Marco Schiavon

University of Florida
Friday September 27, 2024 12:55pm - 1:05pm HST
Coral 2

1:05pm HST

O/LT 2 - Cold-hardiness, Flowering, and Disease Resistance of 24 Camellia Cultivars and Selections in Tennessee, USA
Friday September 27, 2024 1:05pm - 1:15pm HST
Cold hardiness, flowering, and disease resistance of ornamental camellia (Camellia spp.) cultivars are poorly documented when grown in a climate subjected to occasional -18°C (0°F) temperatures. To comprehensively understand cold-hardiness, flowering, and disease resistance, 24 cultivars and selections of camellia species and hybrids were evaluated in McMinnville, TN, USA (USDA Hardiness Zone 7a). Camellias were planted in field plots in Mar 2011, evaluated for flowering from year 2011 to 2020, and rated for low-temperature damage in 2014 and 2023. The Camellia Yellow Mottle Virus, monochaetia leaf spot (Monochaetia sp.), edema, flower blight (Ciborinia camelliae), and flower spot (Botrytis cinerea) severity (% affected) were evaluated from Oct to Nov in 2016 and 2017, and the season-long area under the disease progress curve (AUDPC) was calculated. ‘April Remembered’, ‘April Rose’, ‘Arctic Snow’, ‘Ashton’s Ballet’, ‘Autumn Carnival’, ‘Autumn Spirit’, ‘Elaine Lee’, ‘Survivor’, and a C. chekiangoleosa selection were least affected by low winter temperatures, whereas ‘Korean Snow’, ‘One Alone’, a C. sasanqua selection, ‘Pink Icicle’, and ‘Shishigashira’ were severely damaged. Cultivars that flowered most reliably (5 to 6 of 8 years) included ‘Arctic Snow’, ‘April Remembered’, ‘April Rose’, ‘Ashton’s Ballet’, ‘Autumn Spirit’, and ‘Survivor’, whereas ‘Maroon Mist’, ‘One Alone’, and ‘Shishigashira’ never flowered. ‘Korean Fire’, ‘Classic Pink’, ‘Maroon Mist’, and ‘Spring’s Promise’ displayed the highest virus severity and AUDPC. ‘Arctic Snow’, a C. sasanqua selection, and a C. chekiangoleosa selection had no viral symptoms. A C. sasanqua selection and ‘Red Aurora’ were significantly impacted by edema disorder, with severity ratings of ∼43% and 26%, respectively. Monochaetia leaf spot severity was highest in ‘Red Aurora’ and ‘Spring’s Promise’, whereas ‘Anacostia’, ‘Arctic Snow’, ‘Ashton’s Ballet’, ‘Autumn Spirit’, ‘Classic Pink’, ‘Kuro Delight’, ‘One Alone’, ‘Pink Icicle’, ‘Shishigashira’, and ‘Survivor’ exhibited the least monochaetia leaf spot severity and AUDPC. Flower blight and flower spot were observed only in ‘Arctic Snow’ and ‘Survivor’. These findings will aid landscapers and nursery growers with selecting and managing camellia cultivars effectively.
Speakers
JS

Jacob Shreckhise

USDA-ARS, U.S. National Arboretum
Co-authors
DF

Donna Fare

USDA-ARS, U.S. National Arboretum (Retired)
NA
FB

Fulya Baysal-Gurel

Tennessee State University
NA
MP

Madhav Parajuli

USDA-ARS, U.S. National Arboretum
NA
Friday September 27, 2024 1:05pm - 1:15pm HST
Coral 2

1:15pm HST

O/LT 2 - The American Rose Trials for Sustainability® (A.R.T.S.®) Program Announces Five Winning Roses for 2025
Friday September 27, 2024 1:15pm - 1:25pm HST
The American Rose Trials for Sustainability® (A.R.T.S.®) is a US rose trialing program in its eighth year of announcing winning roses. A.R.T.S.® evaluates newer roses in the marketplace using scientific methodology (blocking, randomization, control cultivars, etc.). Roses are evaluated over two growing seasons and are grown using minimal inputs (i.e. no pesticides, no deadheading, etc.). Entries that score equal to or higher than the control cultivars (Double Knock Out® [‘RADtko’] and Sunrise Sunset™ [‘BAIset’]) and have >50% survival by the end of the trial period, earn regional Local Artist awards. Roses winning in four or more Köppen climate regions earn Master Rose awards. The 2025 award winning roses were planted in 2022. Data was collected monthly during the 2022 and 2023 growing seasons on floral attributes (42.5% of score), foliar health and quality (45% of score), and growth habit (12.5% of score). There were six trial sites representing five US Köppen climate regions (Cfa, Csa, Dfa, Dfb, and H). Five roses won 2025 A.R.T.S.® Local Artist awards: Arctic Blue™ (‘WEKblufytirar’; Csa), Easy to Please™ ('WEKfawibyblu'; Cfa), Pretty Polly® Lavender (‘ZLEpolthree’; Dfa), Sunset Horizon™ (‘MEIsistoma’; Dfa and Dfb), and True Bloom™ True Friendship™ (‘ALTmine’; Csa and Dfa). Performance data will be provided by region for the two control and five winning rose cultivars.
Speakers
KL

Kristine Lang

South Dakota State University
Co-authors
DZ

David Zlesak

University of WI River Falls
GH

Gaye Hammond

Houston Rose Society
NA
GP

Gregory Pongetti

Arboretum and Botanical Garden at Cal State Fullerton
NA
JS

Jeff S. Kuehny

LSU AgCenter Botanic Gardens at Burden
NA
JC

Jessica Clonninger

Boerner Botanical Gardens
NA
JL

Jessie Liebenguth

Reiman Gardens-Iowa State University
NA
PD

Patrick Dahl

Chicago Botanic Garden
NA
RS

Randy S. Nelson

University of Minnesota- Crookston
NA
RH

Richard Hawke

Chicago Botanic Garden
NA
SM

Shaun Moser

Conservation Garden Park
NA
SG

Steve George

Texas A
NA
SW

Susan Worthey

Magnolia Botanical Garden- Mississippi State University
NA
WE

Wanda E. Ellis

LSU AgCenter Botanic Gardens at Burden
NA
Friday September 27, 2024 1:15pm - 1:25pm HST
Coral 2

2:00pm HST

Workshop: Designing Consumer Horticulture Programs: State-wide Impact, County Specific Needs, Locally Diverse Participants
Friday September 27, 2024 2:00pm - 4:00pm HST
The goal of this workshop is to bring together consumer horticulture stakeholders working to create sustainable, enjoyable, healthy communities and to identify methods for achieving greater impact through effective process of program identification, development, and measurement. Those active in any role of developing and delivering consumer horticulture programs, including Master Gardener activities, are encouraged to attend. Creating impactful programming in this field is influenced by stakeholders with varied goals and resources, content specificity due to planting zones and habitat, and the audience’s diverse economic and social demographics. To achieve greater success, more effort must be invested in the process of goal setting, stakeholder participation, resource allocation, collaborative implementation, and measurement. However, drilling down from a state-wide vision through regional, county-based resources and content to be delivered to locally diverse residents requires effective processes and creative thinking. Through discussion, we will identify internal roadblocks to success and learn the creative ways our peers may have overcome similar situations.

Workshop attendees are assigned a number 1, 2 or 3 upon entry. For the first 5 minutes, the participants of the workshop complete one of three pre-workshop surveys
1 - Your Role in the Field of Consumer Horticulture
2 – Success Indicators of Impactful Consumer Horticulture Programs
3 – Identifying Appropriate Consumer Horticulture Programs). For the next 10 minutes, the participants will discuss the definition of the term ‘consumer horticulture’ to ensure clarity of purpose.
This will include an activity generating a list of potential stakeholders and types of programs to illustrate the complexity of the field and to further clarify national, state and local needs. The presenters will then spend 40 minutes sharing a specific example of a layered, complex program development system including their success indicators and impediments. The moderator will represent the flow of information through the system, illustrating the places, sometimes obvious and others unexpected, where the process stops or gains momentum. Presenters represent state, regional and local roles. Workshop participants spend the next 40 minutes in round-robin breakout groups, rotating through 4 topics. The topics are in the form of questions regarding different aspects of goal setting, stakeholder development, program identification and success measurement. Each break out group will be moderated by one of the presenters. The group will reassemble for 20 minutes to discuss the outcome of their work. Notes will be taken for distribution to the group. For the last 5 minutes the group will take different versions of the pre-workshop test as a post-workshop assessment.

Consumer horticulture is a critical topic for national to local level stakeholders invested in developing healthy, sustainable communities. There are few focus areas that affect the quality of life of communities to the degree that this field can. Successful consumer horticulture efforts result in economic development opportunities, increased food access, strengthened social structures, mental health support and more. Yet, while the importance of integrating gardening on individual and community levels is widely recognized, efforts to develop and conduct programs to achieve consumer horticulture goals are difficult to establish and have little data supporting impact. To achieve greater success, more effort must be invested in the process of goal setting, stakeholder participation, resource allocation, collaborative implementation, and measurement. There is a plethora of information available about specific consumer horticulture activities such as community gardens, schoolyard habitats and classes for homeowners. However, before beginning activity development, the field would be strengthened by discussion of the purpose of these programs and the process of delivering information effectively to the intended audience.

The goal of this workshop is to bring together professionals in the field of consumer horticulture from different geographic and organizational systems and, through guided discussion, identify methods for achieving greater impact through effective program identification, development, and measurement.


Coordinator(s)
  • Ruth Carll, Rutgers, Agriculture and Natural Resources, New Brunswick, NEW JERSEY, United States
Speaker/Participant(s)
  • Peter Nitzsche, Rutgers NJAES Cooperative Extension, United States
    Member of Panel (10 mins)
    Summary: Peter Nitzche, Director of the Clifford E. & Melda C. Snyder Research and Extension Farm at Rutgers Center for Sustainable Agriculture, and the Department Head for the Rutgers Cooperative Extension of Morris County represents the perspective of county-level program leadership. He leads events, programming and task force teams while overseeing extension staff that implement programs. He also actively conducts research and contributes to departmental goals.
  • Belinda Chester, Rutgers, Rutgers Cooperative Extension, New Brunswick, New Jersey, United States
    Panel Member (10 mins)
    Summary: Belinda Chester is a Horticulture Program Associate II and Master Gardener Coordinator with the Rutgers Cooperative Extension of Atlantic County. On this panel, she represents the challenges of creating and managing programs with regional and local specificity. She must meet goals of both Rutgers and her county. Her constituents are urban, suburban and rural, including a large farming demographic. This large county also presents a geographic challenge.
  • Ruth Carll, Rutgers, Agriculture and Natural Resources, New Brunswick, NEW JERSEY, United States
    Panel Member (10 mins)
    Summary: Ruth Carll, State Coordinator of Consumer Horticulture and Master Gardener Program, leads Rutgers statewide consumer horticulture activities, ensuring that the University’s goals are achieved. Her research involves impact studies designed to guide program development and determine success. Ruth will represent state-level goal setting and program oversight.
  • Lisa Chiariello, Rutgers, Rutgers Cooperative Extension, New Brunswick, New Jersey, United States
    Panel Member (10 mins)
    Summary: Lisa Chiariello is an Agriculture and Natural Resources Program Associate II with the Rutgers Cooperative Extension of Sussex County. On this panel, she represents the work of developing training for volunteers who deliver programs that meet statewide goals with specific local content and activities.


Friday September 27, 2024 2:00pm - 4:00pm HST
Coral 2
 


Share Modal

Share this link via

Or copy link

Filter sessions
Apply filters to sessions.
  • Career and Professional Development
  • Colloquium
  • Competitions
  • General - Registration/Speaker Center /etc.
  • Hort Theater & Collaboration Center
  • Interactive Workshop
  • Interest Group Session
  • Keynotes and Featured Sessions
  • Meals and Tours
  • Meetings - Committee/Division/interest Group
  • Oral presentation (Individual talk)
  • Oral Sessions
  • Poster presentation (individual talk)
  • Poster Session
  • Reception
  • Ticketed Events